Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Analysis Of Linearly Polarized Modes

I. Avram, and I. Gavril Tarnovan
The Technical University of Cluj Napoca
Cluj, Romania

This paper presents a study on the propagation modes of electromagnetic waves through a step index fiber optics. To analyze the propagation of electromagnetic field, a simulation in Comsol 4.0 has been implemented using two different optical fibers. Obtaining the propagation modes, called linearly polarized modes (LPnm) to get their characterization according to the radial and azimuthal ...

Design and Analysis of MEMS Gyroscope

L. Sujatha[1], B. Preethi[1]
[1]Rajalakshmi Engineering College, Chennai, India

MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the reduction of the damping effect. This MEMS based gyroscope was designed using COMSOL Multiphysics 4.2a. This ...

Simulating Plasmon Effects in Nano-Structured OLED Cathodes Using COMSOL Multiphysics® Software

L. Wang [1],
[1] Konica Minolta Laboratory USA, Inc., San Mateo, CA, USA

Organic light emitting diode (OLED) is an emerging technology for next-generation flat panel display and solid-state area lighting thanks to its many advantages such as light weight, low operating voltage, and flexibility, etc. A typical OLED has a multilayer structure that includes a glass or plastic substrate, an anode (ITO), a hole transport layer (HTL), an emitting layer (EML), an electron ...

Long-term Effects of Ground Source Heat Pumps on Underground Temperature

X. Zheng[1]
[1]Wayne State University, Detroit, MI, USA

This study set up a numerical model in COMSOL Multiphysics® and simulated the underground temperature over 100 years. The long-term underground temperature around an energy pile was investigated without considering groundwater movement. Parameters and boundary conditions were examined before the simulation. The temperature changes at different depths and distances were presented. Temperature ...

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

Stochastic Approach in Approximation of the Transient Plasma Sheath Behavior in FEM

J. Brcka
TEL US Holdings, Inc., Albany, NY, USA

Recently, the advanced plasma tools have been using very high frequency power sources (>100 MHz) and their combination to excite plasma utilized in semiconductor technology. This approach is evoking the regimes that are less understood and currently a subject to many studies and experimental investigations. The paper describes quasi-stochastic approach applied for sheath properties and ...

Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation

M. Jaegle
Fraunhofer-Institute for Physical Measurement-Techniques (IPM), Freiburg, Germany

Electro-thermal interaction is commonly considered only as a matter of joule heating. In addition, the Seebeck-, Peltier- and Thompson-Effects are significant in materials with high thermoelectric figure of merit Z. These thermoelectric materials have a high Seebeck-coefficient α, a good electric conductivity σ, and a poor thermal conductivity λ. They have widespread areas of ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Electrical Conductivity Modeling and Validation in Unidirectional Carbon Fiber Reinforced Polymer Composites

P. Banerjee[1], J. L. Schmidt[1]
[1]Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA

Carbon fiber (CF) reinforced polymer composites (CFRP) have begun to replace Al-Zn-Mg alloys in applications which require high strength-to-weight ratios. The anisotropy of CFRP composites is a result of melt crystallized extrusion techniques that impart an inherent directionality to the CFs and the associated material’s properties. Electrical conductivity was modeled across the entire CF ...