Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

COMSOL-based Simulations of Criticality Excursion Transients in Fissile Solution

C. Hurt[1], P. Angelo[2], R. Pevey[1]
[1]Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, USA
[2]Y-12 National Security Complex, Safety Analysis Engineering, Oak Ridge, TN, USA

Simulation of criticality accident transients offers the ability to confirm understanding of critical configurations, bound accident scenarios and aid comprehensive emergency planning. Computational ability to recreate excursion power histories in fissile solution is sought due to the predominance of solutions in process criticality accidents. Applicable solution transient physics methodologies ...

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. ...

Use of COMSOL Multiphysics to Simulate RF Heating of Passive Conductive Implants in MRI Scanners

Dr. Leewood joined MED Institute (a Cook Medical Company) in January 2004. He came to MED from AC Engineering, Inc.(ACE) which he founded in 1986. ACE provided consulting services in the field of Computer Aided Engineering with specialty in solving a wide range of industrial problems requiring expert use of nonlinear FEA, in particular the ABAQUS® program. Dr. Leewood was brought into MED to ...

Oscillatory Thermal Response Test (OTRT) – An Advanced Method for Gaining Thermal Properties of the Subsurface

P. Oberdorfer[1]
[1]Georg-August-Universität Göttingen, Göttingen, Germany

Thermal Response Tests (TRTs) are the state-of-the-art method to obtain the thermal conductivity of the subsurface in the nearby ambience of a borehole heat exchanger (BHE). The results of TRTs are used to determine the necessary depth of the borehole and to make long time predictions about the potential of heat extraction. For a TRT, a constant heat load is injected into the subsurface and the ...

Flow Analysis and Optimization of a Hierarchical Plate Heat Exchanger for an Adsorption Heat Pump

E. Tempfli[1], F.P. Schmidt[1]
[1]Karlsruhe Institute of Technology (KIT), Fluid Machinery (FSM), Karlsruhe, Germany

The paper investigates the hydrodynamic performance of a hierarchical parallel channel network for the objective of optimal thermal coupling to heat released in the adsorption processes, as in adsorption heat pumps. More specifically, the uniformity of the fluid flow over the network is improved by optimizing the topology of the manifold channels of the two hierarchical levels. For this purpose ...

Modeling Maillard Reaction and Thermal Transformations During Bread Baking

D. Papasidero[1], F. Manenti[1]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Milano, Italy

One big challenge for the food industry is to predict and optimize flavors. The Maillard reaction occurs in food matrices containing carbohydrates and proteins under specific operating conditions. The presented research couples thermal and kinetic modeling to the bread baking process, an ideal field to study this complex set of reactions responsible for many bread flavors. The thermal model ...

Simulation of Beam Propagation with Two-photon Absorption in Semiconductor Materials

Syuhei LEE et al.[1]

[1]Chiba University, Chiba, Chiba, Japan

We have studied ultrafast all-optical switching devices based on two-photon absorption, which are expected to have ultrafast response less than 1 ps in wideband and to be independent of polarization of light. In our laboratory, we have obtained the analytical solution for the equation of light propagation in our model that the two-photon absorption occurs in a sample. Though we have used the ...

Numerical Simulation of Evaporation Processes in Electron Beam Welding - new

E. Salomatova[1], D. Trushnikov[1], V. Belenkiy[1], V. Tsaplin[1]
[1]Perm National Research Polytechnic University, Perm, Russia

In this paper describes an original method for indirect measurement of the vapor pressure and temperature in the keyhole in electron beam welding. This method is based on the determination of the concentration of chemical elements in the vapor above the welding zone. Taking into account these data model is built 2D diffusion processes with heat and mass transfer elements in the melt, which ...

Thermomechanical Effects of the Packaging Molding Process on the Chip in Integrated Circuits - new

N. Semmar[1], M. Fournier[1], P. S. Alleaume [2], A. Seigneurin [3], , ,
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France
[2]Collegium Sciences et Techniques, Orléans, France
[3]ST Microelectronics Tours SAS, Tours, France

Usually, in integrated circuits, the chip is brazed on leadframe and then, a polymer resin is molded around to create the packaging. On the first hand, the molding process at high temperatures will induce thermomechanical stress on the chip. As the leadframe, the chip and the braze have all different thermoelastic properties, these stress can be critical for the chip connections. To ...