Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Computational Methods for Multiphysics Applications with Fluid-structure Interaction

P. Seshaiyer[1], K. Nong[1], S. Garcia[2], E. Aulisa[3], and E. Swim[4]
[1]George Mason University, Farifax, VA, USA
[2]United States Naval Academy, Annapolis, MD, USA
[3]Texas Tech University, Lubbock, TX, USA
[4]Sam Houston State University, Huntsville, TX, USA

Efficient modeling and computation of the nonlinear interaction of fluid with a solid undergoing nonlinear deformation has remained a challenging problem in computational science and engineering. Direct numerical simulation of the non-linear equations, governing even the most simplified fluid-structure interaction model depends on the convergence of iterative solvers which in turn relies heavily ...

The 3D Mixed-Dimensional Quench Model of a High Aspect Ratio High Temperature Superconducting Coated Conductor Tape

W.K. Chan[1,2], J. Schwartz[2], P. Masson[3], and C. Luongo[4]
[1]FAMU-FSU College of Engineering, Tallahassee, FL, USA
[2]North Carolina State University, Raleigh, NC, USA
[3]Advanced Magnet Lab, Palm Bay, FL, USA
[4]ITER Organization/Magnet Division, Saint Paul-lez-Durance, France

A successful development of an effective quench detection and protection method for a high temperature superconducting (HTS) coil based on a HTS coated conductor tape lays on a thorough understanding of its slowly propagating, three-dimension (3D) quench behavior. Toward this goal, a 3D micrometer scale finite element (FE) thermo-magnetostatic HTS tape model is developed and implemented in ...

Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receivers

O. Smirnova, T. Fend, P. Schwaryboezl, and D. Schoellgen
German Aerospace Center, Institute of Technical Thermodynamics, Koeln, Germany

Results of simulations on flow and heat transfer in a porous Silicon Carbide honeycomb structure applied as a solar air receiver are presented. In this application porous materials are put in concentrated solar radiation. Flux densities of up to 1000 MW/m² are reached. Simultanously, ambient air flows through the material to be heated up to temperatures of app. 800°C. This hot air is then used ...

Modeling of Retinal Electrical Stimulation Using a Micro Electrode Array Coupled with the Gouy-Chapman Electrical Double Layer Model to Investigate Stimulation Efficiency

F. Dupont, R. Scapolan, C. Condemine, J.F. Bêche, M. Belleville, and P. Pham
CEA, LETI, Minatec, Grenoble, France

The electrical stimulation for retinal implant has known significant improvements in the last decades with many implantations and experimentations. The ability to create better controlled and adapted signals to increase the efficiency in stimulation is a major objective. The aim of this study is to develop a numerical platform based on COMSOL Multiphysics to simulate different waveforms. The ...

Homogeneous Heating of Milk

A. Stahel, and A. Reichmuth
Berner Fachhochschule
Biel, Switzerland

When milk is taken out of a refrigerator it has to be heated up to 37°C. The standard solution is to put the bottle in a bath of warm water and wait. The goal is quickly to achive a uniform temperature of 37°C, without ever exceeding 40°C. Using COMSOL Multiphysics and a measurement setup for calibration, we show that this can be improfed by using variable heating. By choosing heating ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid ...

Optimizing Performance of Equipment for Thermostimulation of Muscle Tissue using COMSOL Multiphysics

J. Kocbach[1], K. Folgerø[1], L. Mohn[2], O. Brix[3]
[1]Christian Michelsen Research, Bergen, Norway
[2]Luzmon Norway, Bergen, Norway
[3]Michelsen Medical, Bergen, Norway

The design challenge for thermostimulation equipment is to get a combination of high electric field strength and high temperature within the muscle tissue without causing pain or skin burns. In the present work, COMSOL Multiphysics is used to simulate the temperature distribution and electric field distribution within body tissue for varying body composition and varying design parameters of the ...

A MEMS Condenser Microphone for Consumer Applications

S. Kesari[1], A. Pandit[1], K. Mishra[1], Kaushal B. K.[1]
[1]Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India

The MEMS microphone is also called microphone chip or silicon microphone.The pressure sensitive diaphragm is etched directly into a silicon chip by MEMS techniques and is usually accompanied with integrated preamplifier. Most MEMS microphones are variants of the condenser microphone design. The device consists of a polysilicon diaphragm suspended over a single crystal silicon backplate ...

Analysis of Dielectrophoretic Force by Using COMSOL

Taewoo Lee[1]
[1]Department of Biomedical Engineering, Yonsei University, Seoul, South Korea

Dielectrophoresis is a phenomenon in which a force is exerted on a dielectric particle when it is subjected to a non-uniform electric field. In this research, we analyze dielectrophoretic (DEP) force using a geometry containing two electrodes, one with SiO2 and one without, with a gap between them. The relevant governing equations include the DEP force, the electrohydrodynamic and corresponding ...

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm3-reactor

F. Ferrero[1], M. Kluge[1], R. Zeps[1], T. Spoormaker[2]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Chairman PlasticsEurope Fluoropolymers TFE Safety Task Force, Du Pont De Nemours, Dordrecht, The Netherlands

The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) from TFE at high pressures. Simulations of the self-heating and consequent self-ignition of TFE in a 100-dm3 ...

2691 - 2700 of 3391 First | < Previous | Next > | Last