Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Clean Energy Technologies: Growing Need for Multiphysics Modeling

Iouri Balachov
Senior Scientist,
SRI International, Menlo Park, CA, USA

Iouri Balachov is a Senior Scientist at SRI International (Menlo Park, CA) where he is leading development of Direct Carbon Fuel Cell technology for clean and efficient power generation from coal, biomass, and a wide variety of carbon containing fuels. Prior to SRI he was an engineer at Westinghouse nuclear (Pittsburgh, PA), researcher at Penn State University (State College, PA), and researcher ...

Parameter Optimization for Finite-Element Method (FEM) based modeling of singlet oxygen during PDT

T. Zhu, and K. Wang
Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Photodynamic therapy(PDT) is a new cancer treatment modality using the photochemical reaction of a photosensitizing drug, light, and oxygen. The objective of this project is to determine the photochemical parameters necessary for singlet oxygen modeling during PDT using parameters obtained from a microscopic model.   FEM calculation in COMSOL Multiphysics was used to determine the model ...

Simulations of Hydrogen Cross Field Plasma Switch

M. Zhang
China Electronics Technology Group Corporation, China

With this presentation, some content has been discussed from several parts as follows: 1. Plasma switches are introduced by their derivation and types, and the operating mechanism of Hydrogen cross field plasma switch is indicated then. 2. The related theories of Hydrogen plasma to simulate a DC discharge have been discussed. 3. Hydrogen simulation model is established from two aspects: A: Fixed ...

Design and Analysis of MEMS-based direct methanol fuel cell

Z. Yuan
Harbin Institute of Technology, Harbin, China

In this presentation, “Design and Analysis of MEMS-based direct methanol fuel cell,” there are three main model parts, two-dimensional two-phase mass transport model, μdmfc three-dimensional model and a novel cathode model. First, a two-dimensional two-phase mass transport model was established. In this model, the process of gas-liquid transfer and electrochemical reaction within the μ ...

Cavity Sprayer Flow Optimization for Medical Devices Industry

T. Selvam, V.P. Kotte, and M. Marimuthu

HCL Technologies Ltd, Chennai, Tamil Nadu, India

Globally in Otolaryngology industry, Sinusitis is one of the most common diseases related to the nose. Sinusitis is caused when the cilia fail to move the mucus. As a result sinus tissue gets infected that leads to blockage of the sinuses. All the sinusitis can not be cured through drugs and certain require surgery. When a sinus cavity subjected to a nasal endoscopic surgical procedure, one of ...

Engineering Light Photonics, Plasmonics and Meta-materials

Dr. A. Prabhakar
Dept. of Electrical Engineering, IIT-Madras, Chennai, Tamil Nadu, India

Anil Prabhakar joined the faculty at IIT-Madras in 2002, after 5 years of post-doctoral experience in the hard disk drive industry. His current research interests include photonics, spintronics, nonlinear dynamics and alternative and augmentative communication. As a member of the Optics Group in the Dept. of Electrical Engineering, he is actively involved in areas of data storage, ...

Modeling Bacterial Clearance Using Stochastic-Differential Equations

A. Jeremic, and A. Atalla
McMaster University, Hamilton, ON, Canada

In this paper, we develop a mathematical model to simulate the movement of bacteria into and within a capillary segment. Also, we model the transportation through capillary walls by means of anisotropic diffusivity that depends on the pressure difference across the capillary walls. By solving the model using COMSOL, it was possible to predict the concentration of bacteria at points within the ...

Comparative Study of an Open Waveguide.Application to Deconvolution of a Magnetic Probe in Near-Field Zone

A. Saghir, J.W. Tao, and C. Avram
INP, Laplace site Enseeiht, Toulouse, France

We present here our work on deconvolution of a magnetic probe to mesure electromagnetic emissions in near-field zone. To achieve this work,we have chosen a rectangular waveguide (WR90) as a radiating structure.Theoritical near-field is simulated using a FEM software (COMSOL) and also obtained by using a program based on transverse operator method (TOM), that lead to a very good field ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

Modeling a Cooling Skylight

M. Fält, and R. Zevenhoven
Thermal and Flow Engineering Laboratory, Department of Chemical Engineering
Åbo Akademi University

Air-conditioning produced by traditional vapor compression cycle is an energy demanding operation. By using passive cooling methods is it possible to avoid, or at least reduce, the need for vapor compression cooling. A passive radiative cooling method could be a three windowed skylight, filled with a greenhouse gas. Earlier modeling of such a skylight has shown promising results, and work has ...

3161 - 3170 of 3390 First | < Previous | Next > | Last