Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Modal Analysis of Rotating Machines

C. Frankrone [1], L. Fromme [1],
[1] Department of Engineering Sciences and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany

Machines with rotating components are prone to vibrations because an imbalance of the rotor would always act as a harmonic excitation force to the machine. Thus oscillations close to the natural frequencies are tried to pass through fast in the run-up and cast-down or even completely avoided for higher structural frequencies. Nevertheless vibrations still occur and affect the design of the ...

Interactions of Magnetic Particles in a Rotational Magnetic Field

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten
Bielefeld University, Germany

Particle-particle interactions are usually neglected when considering the behaviour of magnetic particle's so called magnetic beads in e.g. a microfluidic device. However, if the particle density exceeds a critical limit, this assumption might not lead to proper results anymore. In this paper the particle-particle interaction of magnetic beads in an external magnetic field will be discussed. It ...

Can the Drumhead be Decomposed from Spectra? - An Application for the Chesapeake Bay

K. McIlhany[1], and R. Malek-Madani[2]
[1]Physics Department, United States Naval Academy, Annapolis, MD, USA
[2]Mathematics Department, United States Naval Academy, Annapolis, MD, USA

In 1966, mathematician Mark Kac proposed the question "Can One Hear the Shape of a Drum?" in an article for American Mathematical Monthly. In attempting to resolve the Chesapeake Bay from an eigenfunctional approach, a one-to-one mapping of this famous problem has been identified. The quote above will re-write to "Can One Hear the Shape of a Drum from Multiple Point-Sampled Spectra?". This ...

Quasi-TEM Analysis of Multiconductor Transmission Lines Embedded in Layered Dielectric Region

S.M. Musa[1], and M.N.O. Sadiku[1]
[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the quasi-TEM two-dimensional (2D) approach for the analysis of multiconductor transmission lines interconnect in single and two-layered dielectric region using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is as suitable and effective as other ...

Safe Storage Parameters During CO2 Injection Using Coupled Reservoir-Geomechanical Analysis

T.I. Bjørnarå[1], E. Aker[1], and E. Skurtveit[1]
[1]NGI, Oslo, Norway

Safe short term storage of CO2 depends mainly on structural and solubility trapping. On longer term, mineral trapping is also contributing to the trapping of CO2. To be able to investigate the importance of these different storage mechanisms, a finite element model for simulation of CO2 injection has been developed in COMSOL Multiphysics®. The model describes and solves for two-phase flow ...

Finite Element Model of a Complex Glass Forming Process as a Tool for Control Optimization

F. Sawo[1] and T. Bernard[1]
[1]Fraunhofer Institute for Information and Data Processing IITB, Karlsruhe, Germany

This paper addresses the modeling of a complex glass forming process as an example of a complex, nonlinear distributed parameter system. The system is modeled by a fluid dynamics approach, which means that the forming is regarded as a fluid with free surfaces. Here, the coupling of the forming process with the heat flow is considered. The influence of crucial model parameters (e.g., dynamic ...

TM Wave Propagation in Optical Nanostructures with a Third-Order Nonlinear Response: Modeling and Validation with COMSOL

A. Kildishev[1], E. E. Narimanov[1]
[1]Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

An enhanced method is used for analysis of third-order nonlinearities in optical nanostructures with scalar TM (H-field) frequency domain formulation. After embedding it in COMSOL Multiphysics it is shown to produce fast and accurate results without superfluous vector E-field formalism. A standard TM representation based on cubic non-linear susceptibility χ(3) results in an intractable ...

Numerical Simulation of Pulsed TIG Welding Partial and Full Penetration

A. Traidia[1][2], F. Roger[1], and E. Guyot[2]

[1]Ecole Nationale Supérieure de Techniques Avancées, Palaiseau, France
[2]AREVA NP, Centre Technique Soudage, France

In this poster, a numerical model of spot pulsed current TIG welding for partially and fully penetrated weld pools is presented. Heat transfer and fluid flow in the weld pool driven by the combination of electromagnetic force, buoyancy force, surface tension gradient and latent heat are included in our model. A new formulation of the electromagnetic problem is introduced to take into account ...

Influence of Inlet Fluctuations on the Development of The Turbulent Two-Stream Mixing Layer

J. Tawfik, and R. Arimilli
The University of Tennessee, Knoxville, TN, USA

The finite element method applied to the k-epsilon turbulence model is used to investigate the two-stream turbulent mixing layer. Whereas the model is known as one of the most popular of the turbulence models to date, the model has yet to be applied to the classical mixing layer problem to the best of our knowledge. A transient k-epsilon turbulence model in COMSOL is used to solve this ...

Design Of Magnetoplasmonic Resonant Nanoantennas For Biosensing Applications

M.E. Mezeme, and C. Brosseau
Université Européenne de Bretagne–Université de Bretagne Occidentale, Brest, France

The study of plasmonic structures continues to be at the forefront of research in nanotechnology and condensed matter physics. Here, we present a numerical model we have created and verified to characterize the frequency dependence of the effective magnetic permeability and permittivity of a core-shell (CS) nanostructure composed of a magnetic core and a plasmonic shell with well-controlled ...