Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Stochastic Modeling of Biological Systems – Ranking the Model Parameters of the Human Vocal Folds

D. Cook[1]
[1]New York University, New York, USA

Computational models of biological systems are becoming more and more common in medical research areas. Evidence of this can be found by examining the number of articles containing the term “finite element” in the expansive National Institutes of Health (NIH) digital research archive PubMed. Numerical modeling of biological systems allows the execution of “computational ...

Optimization of Dynamic Embedded, Water Based Surface Heat (and Cold) Emitting System for Buildings

S. Thomas[1], P.Y. Franck[1], and P. André[1]
[1]Department of Sciences and Environmental Management, University of Liège, Arlon, Belgium

This paper presents the heat flow model and the experimental test bench developed to optimize a new kind of heating floor. In the first part of the text is described the new kind of high reactivity emitting device for building heating and cooling. The second part illustrates the numerical model developed to evaluate the device efficiency. Finally experimental test bench implementation and ...

COMSOL in the Academic Environment at USNA

K. Mcilhany[1], and R. Malek-Madani[2]
[1]Department of Physics U. S. Naval Academy, Annapolis, Maryland, USA
[2]Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland, USA

The U.S. Naval Academy has used COMSOL as a research tool for many years. Academic usage of COMSOL for student use has only begun in the last five years. Student involvement comes in four types, course-wide usage, focused course related work, student projects and semester-long research projects. A summary of how COMSOL has been successfully used at USNA will be given, showing examples of ...

Elastoplastic Models of the Interaction between Active Fronts of the Southern Alps and Dinarides (NE Italy and NW Slovenia)

M. Coccia[1], E. Carminati[1], F. Rolandone[2], M. Battaglia[1], D. Zuliani[3], and P. Fabris[3]
[1]Università La Sapienza, Roma, Italy
[2]Université Pierre et Marie Curie, Paris, France
[3]Centro Ricerche Sismologiche, Udine, Italy

We use GPS measurements and Finite Element analysis to investigate strain accumulation in the interaction between active fronts of the Southern Alps and Dinarides at the northern edge of the Adriatic micro-plate. We develop a three dimensional model of the area taking into account the regional topography, approximating the crust as an elasto-plastic medium and reproducing as close as possible ...

Simulation of a Modular Die Stamp for Micro Impact Extrusion

A. Schubert[1][2], R. Pohl[1], and M. Hackert[1]
[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Micro impact extrusion is investigated at Chemnitz University of Technology as a potential procedure for large area machining of micro cavities within the scope of the SFB/Transregio 39 PT-PIESA of the German Research Foundation. Applying impact extrusion micro forming is done by material flow opposite to the effective direction of the force into the structure of the tool. Therefore no ...

Application of System Identification Methods to Implement COMSOL Models into External Simulation Environments

A.W.M. van Schijndel[1] and M. Gontikaki[1]

[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Full coupling of distributed parameter models, like COMSOL, with the lumped models often lead to very time-consuming simulation duration times. In order to improve the speed of the simulations, the idea of using system identification methods to implement the distributed parameters models of COMSOL into external simulation environments, is explored. It is concluded that the system identification ...

Modelling and Experimental Validation Possibilities of Heat Transfer Room Model

M. Zalesak, and V. Gerlich
Tomas Bata University in Zlin, Zlin, Czech Republic

The study presents first authors experience with COMSOL Multiphysics environment used as a possible modeling tool of thermal building behavior. The idea of the project was to gain thermal response to changed boundary conditions with the application of COMSOL environment as a modeling tool for 3D buildings or 3D building segments. The room as building segment was implemented in the COMSOL ...

Design Improvement Of A Bench-Scale Nanofiltration Device By CFD Study

B. Balannec[1,2], T. Renouard[1,2], and F.Cortès-Juan[3]
[1]Université de Rennes 1-ENSCR-CNRS, France
[2]Université européenne de Bretagne, France
[3]Universidad Politécnica de Valencia, Spain

Feasibility studies in the field of membrane processes are generally first carried out with bench-scale membrane filtration cells. These small laboratory cells also allow evaluating the influence of operational parameters and the membrane performances. Smart design of the cell geometry may improve the flow distribution and consequently the membrane filtration performances by increasing shear ...

Numerical Investigation of a Time-dependent Magnetic Actuation Technique for Tagging Biomolecules with Magnetic Nanoparticles in a Microfluidic System

A. Munir, J. Wang, Z. Zhu, and H.S. Zhou
Worcester Polytechnic Institute, Worcester, MA, USA

The magnetic body forces that act on mono-dispersed magnetic nanoparticles (MNPs) tagged biomolecules in a microfluidic system can be efficiently used in various applications that involve separation and detection including DNA and protein analysis, bio-defense, drug delivery, and pharmaceutical development. In this work, we report an FEM model to demonstrate a novel method of tagging ...

Equation-Based Modeling: The Structural Contact Problem Solved by The Velocity Approach

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna, Pisa, Italy

The contact between infinitely rigid body and deformable part is studied using the velocity as a dependent variable. A simple forging case is evaluated. The velocity approach is realized by means of using COMSOL with the Equation-Based Modeling. The contact model evaluated in this work is suitable to model the forging process. For a given mesh and element it is possible to choose the optimum ...