- Bridging the Terahertz Gap
- Modeling the Lithium-Ion Battery
- Protection contre la Corrosion
- Modélisation des batteries
- Modélisation et Simulation dans le développement des piles à combustible
- Modélisation thermique des petits satellites
- Analyse électro-vibroacoustique d'un transducteur à armature équilibrée
Consultez les proceedings de la Conference COMSOL 2024
锂离子电池的温度均匀性是影响电池充放电性能的重要指标之一,由于在放电过程中电池每个组件的产热情况不同,导致电池的温度分布不均匀,会给电池带来一定的安全隐患。因此利用有限元仿真软件COMSOL Multiphysics建立了LFP方形电池的热-电化学耦合模型,用以计算放电过程中电池各个组件产热,根据仿真结果可以得到电池各组件在放电过程中的产热功率及温度分布情况,从而为锂离子电池的结构设计提供理论参考。 模型的建立主要应用到COMSOL软件中锂离子电池接口及固体传热模块,其中锂离子电池接口用于建立电池的电化学模型,模拟电池充放电过程中电池内部的电化学反应 ... En savoir plus
运用COMSOL Multiphysics 5.4软件建立18650圆柱电池全三维模型。首先,拆解18650电池,对电池内部结构有一个详细的了解,为建模做好准备。建模前应确定各部分材料及几何尺寸,18650电池几何尺寸为直径18mm,高度65mm。确定正负极层及隔膜的高度;确定涂层材料、相应的克容量、材料压实密度以及活性物质的比例,计算得出涂层厚度。正极集流体为铝箔,负极集流体为铜箔,选取铝箔、铜箔以及隔膜的厚度,计算出正极层、负极层、以及两层隔膜的厚度和,进而计算得出卷绕层数。运用各几何参数在COMSOL软件中建立电池的全三维模型结构如图1所示。建立几何模型后 ... En savoir plus
在电池包中,存在多个模组和电池串并联而会不断的积蓄热量,热量得不到及时的控制,导致电池组温度分布的不均匀性,引起电池寿命的减少和均衡性变差,同时电池安全也得不到保障,设计出高效且可靠的散热结构和方式尤为重要。 通过COMSOL Multiphysics 5.4软件中建立耦合的电池瞬态热模型,包括模型几何的构建,材料参数的导入以及网格剖分。电池的几何模型为原始几何模型,在COMSOL Multiphysics 5.4软件中的边界条设置均为默认,网格剖分采用物理场控制的四面体网格。在模型的输入部分主要为三块,分别为电池的发热功率随时间的变化曲线 ... En savoir plus
NMC523电池因为其较高的容量,已经逐渐应用于动力电池行列,但是锂离子电池在使用过程中的不合理容易引发热失控事故。这项模拟工作是来验证探讨NMC523电池针刺热失控中的机理。模拟过程中用到COMSOL化学反应工程模块、全局常微分方程模块。通过模拟,能够看到针刺过程中电池电压变化以及跟随的温度变化。这项模拟工作参考了部分主流杂志的模拟思路,也融合了自己的理解从而进行建模计算。此次模拟能够为电池针刺热失控机理探究提供思路,也能够为正确使用锂离子电池提供建议。 En savoir plus
模型通过锂电池模块、传热模块、CFD模块的耦合实现。锂电池与传热采用弱耦合形式实现,而传热及流体采用强耦合形式实现。电芯产热与散热满足能量守恒定律。 根据三电极实测数据分别修正不同倍率充电条件电芯全电池电压、正参电压、负参电压,确定电芯动力学参数,完成模型的标定。热源包括正负极柱以及连接片焊接处产生的欧姆热,极组所产生的电化学热。流体属性及入口、出口的边界条件根据特定需求来设置。流体采用湍流中K-ε类型,流体对网格的要求比较高,流体网格需要加密并设置为流体静力学物理场来增加模型的收敛性,模型计算量较大,故采用分离式求解器。充电策略因为以时间作为阶梯充电倍率的转换依据 ... En savoir plus
运用COMSOL Multiphysics 5.4软件锂离子电池接口建立18650圆柱电池全三维模型。首先,拆解18650电池,对电池内部结构有一个详细的了解,为建模做好准备。建模前应确定各部分材料及几何尺寸,18650电池几何尺寸为直径18mm,高度65mm。确定正负极层及隔膜的高度;确定涂层材料、相应的克容量、材料压实密度以及活性物质的比例,计算得出涂层厚度。正极集流体为铝箔,负极集流体为铜箔,选取铝箔、铜箔以及隔膜的厚度,计算出正极层、负极层、以及两层隔膜的厚度和,进而计算得出卷绕层数。运用各几何参数在COMSOL软件中建立电池的全三维模型结构如图1所示 ... En savoir plus
摘要: 锂离子电池热失控会对人造成极大的危害,如何避免这些热失控的发生成为了学者们主要的研究课题,为了对其进行研究,必须要从电池内部结构和机理入手去分析,需要从电化学原理到化学反应进行深入细致的分析,需要对锂离子电池的生热机理有全面的认识。采用仿真技术对锂离子电池失控研究,可以极大的减少研究成本,并对失控过程进行有效的预测。 COMSOL Multiphysics 软件的使用: 利用 COMSOL Multiphysics 中的传热模块以及 ODE 模块,建立锂离子电池三维热失控模型,分析其内部发生化学分解的全过程。 结果: 锂离子电池热失控过程中 ... En savoir plus
车载动力锂离子电池通常采用层叠式结构来提高电池容量,减小体积。层叠式结构的电池通常将正负极耳布置于电池顶端,这种布置方式导致电池沿平面方向温度分布不均。为研究电池温度变化与分布特征,以10Ah磷酸铁锂电池为研究对象,通过耦合质量、电荷、能量及电化学动力学方程,建立了三维分层电化学-热耦合模型。仿真结果表明,在放电过程中,极耳与极板连接区域电位分布与电流密度分布都存在明显的分布梯度,且在正极极耳处电流密度值最大,温升最高,放电结束时温升达到最大值8℃。电池不同位置的温升速率不同,放电前期,靠近极耳区域的温升速率较大,远离极耳处温升速率较小;随着放电过程的深入 ... En savoir plus
析锂是锂离子电池容量衰减的重要原因之一,目前并不能有效的确定什么位置首先发生析锂,所以通过仿真技术对锂离子电池内部的析锂情况进行仿真,不失为一种有效的方式。通过COMSOL中的锂离子电池模块建立一维电化学模型(分为集流体、电极、隔膜五个部分),固体传热模块建立三维传热模型(为方便计算,将电芯简化为一个长方体)。这两个模型通过电化学产热和平均温度耦合在一起。温度是非恒定的,在锂离子电池模块中,扩散系数、反应速率等均是与温度相关的参数。在负极与隔膜界面上给出10个位置点位,当该点位位置处的液相电势大于等于固相电势时,认为发生析锂;由于是充电态,需要有充电截止电压 ... En savoir plus
锂离子电池外短路是被受关注的锂电池安全问题之一,当电池发生外短路时,瞬间电流极大,电芯内部会产生大量的热,当温度达到一系列副反应发生的温度将引发热失控。因此锂电池外短路仿真有着极为重要的意义。本模型通过数学模块的PDE接口及传热模块的耦合实现。电学模块通过PDE设置(0维),其核心利用电池剩余电量作为变量,通过COMOSL中内置的偏微分方程接口,将剩余电量对时间的偏导数作为流经电池的总电流。在偏微分方程中定义因变量qc,控制方程中ea为质量系数,da为阻尼系数,为守恒通量,f为源相,当ea设置为1,da设置为1,设置为0,源相f设置为-Is时,此时方程变为所需要方程 ... En savoir plus