Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Modelling Of Moisture Related Mechanical Stress In Wooden Cylindrical Objects Using COMSOL: A Comparative Benchmark

H. Schellen, and J. Van Schijndel
Eindhoven University of Technology, Eindhoven, The Netherlands

For preservation of artefacts in a museum the indoor climate is often restricted to a very narrow interval for temperature, but most of all for relative humidity. In old buildings the museum conditions of artefacts, e.g. near cold walls, mostly are not in line with museum recommendations.To have an impression of indoor museum climates in old buildings, a large number of case studies were carried ...

Multiphysics and Simulation of MEMS based Bolometer for Detecting the Radiations in Nuclear Power Plants

K. Umapathi[1], S. Swetha[2], K. Ranjitha[2], K. Vinodh[2], K. Deebiga[1], R. Harisudarsan[1]
[1]United Institute of Technology, Coimbatore, TamilNadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

High performance micro sensors are important to detecting special nuclear materials radiations in different fields to save the globe. This paper is mainly focused on to develop a MEMS based bolometer for detecting the nuclear radiation to provide the high security in Nuclear power Plants. A thermally sensitive micro metal plate is designed and placed on a substrate through micro thermal link. ...

Sensitivity of the Compression-Softening Effect to Mesh Imperfections in Compressed Flexures - new

S. Saha[1], A. Ramirez[1], C. DiBiasio[2], M. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]Charles Stark Draper Laboratory Inc., Cambridge, MA, USA

Introduction: Flexures are low-cost bearings that are capable of providing motion guidance with high repeatability and low friction (Figure 1). However, applications of flexure bearings are often limited by their low range. This is because motion guidance in flexures is provided by bending/flexing of members; thus, range is limited by the bending stiffness. As the bending stiffness can be ...

Modeling Flow and Deformation During Salt-Assisted Puffing of Single Rice Kernels - new

T. Gulati[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Puffing of biomaterials involves mass, momentum and energy transport along with large volumetric expansion of the material. Development of physics-based models that can describe heat and moisture transport, rapid evaporation and large deformations can help understand the puffing process. In this context, a fundamentals based study of salt-assisted puffing of rice is described. A multiphase model ...

Modeling the Buckling of Isogrid Plates

E. Gutierrez-Miravete[1], and J. Lavin[2]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]UTC-Pratt & Whitney, East Hartford, CT, USA

Isogrid plate components are widely used in aerospace structures because of their greater stiffness to weight ratios compared with thicker plates of the same material. Isogrid plates consist of flat plates conjoined with thin ribs in specific geometric patterns. The purpose of this study was to investigate the applicability of COMSOL Multiphysics for the determination of buckling loads and modes ...

The Microplane Model for Concrete in COMSOL

A. Frigerio
RSE S.p.A.
Milan, Italy

The safety of large civil structures is often evaluated by means of numerical models based on the Finite Element Method. In this frame, the choice of a constitutive law able to represent the complex mechanical behaviour of concrete is a key point. This paper deals with a detail description of all the steps needed to implement the Microplane Model in COMSOL; the formulation is based on the ...

Prediction of Magnetic Fields, Eddy Currents, and Loads in a Tokamak During a Disruption for Alcator C-Mod's Advanced Outer Divertor - new

J. Doody[1], B. Lipschultz[2], R. Granetz[1], W. Beck[1], L. Zhou[1], J. Irby[1]
[1]Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA, USA
[2]York Plasma Institute, University of York, Heslington, York, UK

COMSOL Multiphysics® has been used to predict the magnetic fields, eddy current, lorenz forces and stresses during a disruption for the new Advanced Outer Divertor for the Alcator C-Mod tokamak. A tokamak is used to study magnetic confinement of plasma for fusion, and a disruption occurs when the plasma decays, rapidly losing all of its current. COMSOL has been used to recreate the fields ...

Residual Stress in the Silicon Membrane of Circular CMUT

A. T. Galisultanov [1], P. Le Moal [1], V. Walter [1], G. Bourbon [1],
[1] FEMTO-ST, Besanson, France

During last twenty years capacitive micromachined ultrasonic transducers (CMUT) have been developed extremely fast [1-2]. CMUT is an attractive alternative to traditional piezoelectric transducer, which converts electrical signal to mechanical vibration and vice versa. The main advantages of CMUT compared to most common solution: wide bandwidth (improved image resolution) and compatibility with ...

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

A Three Dimensional (3D) Thermo-Hydro-Mechanical Model for Microwave Drying - new

T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, USA

Microwave drying of foodstuffs is a complex interplay of mass, momentum, and energy transport coupled with large deformation of the solid. To be able to better understand the microwave drying process, a fundamentals-based three dimensional (3D) multiphase porous media based model is developed to simulate the microwave drying process. An elaborate experimental system comprising of infrared ...