Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical modelling of the damage potential of climate variations to a historic wooden cabinet

Z. Huijbregts, H. Schellen, and J. van Schijndel
Department of the Built Environment
Eindhoven University of Technology
Eindhoven, The Netherlands

The two wooden cabinets of Jan van Mekeren that are located in Amerongen Castle show comparable wood damage; in particular large cracks in the cabinet doors are clearly noticeable. It is assumed that these cracks were caused by bad indoor climate conditions in the castle. Combined computational modelling of the indoor climate conditions in the castle and the hygroscopic and mechanical ...

Bone Remodeling Following Total Hip Replacement: Short Stem Versus Long Stem Implants

M.S. Yeoman[1], A. Cizinauskas[1], C. Lowry[2], G. Vincent[3], S. Collins[3], D. Simpson[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]Corin Group, Cirencester, United Kingdom
[3]Imoprhics, Manchester, United Kingdom

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important. Conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More ...

Fretting Wear and Fatigue Analysis of a Modular Implant for Total Hip Replacement

M.S. Yeoman[1], A. Cizinauskas[1], D. Rangaswamy[1]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom

Modular orthopaedic devices are a feature of total joint replacements today. These modular orthopaedic devices allowing surgeons to choose from a variety of available implant sizes, designs & material options for the procedure required and the patient specific requirements. However, even though this allows for greater scope of implant construction, if the various components of the modular design ...

Modeling of Ultrasonic Fatigue-Life Testing Machine

D. Dimitrov[1], V. Mihailov[1], B. Kostov[1]
[1]Technical University of Varna, Varna, Bulgaria

Usually fatigue-life tests of materials are long, time-consuming and expensive. With the development of high power piezoceramic actuators nowadays it is possible to provide at very high cycles 10e10 fatigue tests (VHCF) for reasonable times, at high frequency. The ultrasonic fatigue machine consists of piezoceramic transducer, booster, horn and specimen made of tested material. System works in ...

Modeling of the Photo-Mechanical Response of Liquid-Crystal Elastomers

G. Cerretti[1], J.-C. Gomez-Lavocat[1][2], K. Vynck[1], D.S. Wiersma[1][3]
[1]European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
[2]The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, Castelldefels, Spain
[3]Istituto Nazionale di Ottica (INO), National Research Council (CNR), Florence, Italy

Liquid-crystal elastomers (LCEs) [1] have attracted a great attention in recent years due to their high potential in a wide range of applications, from microfluidics components [2] to artificial muscles [3]. The photo-mechanical response of LCEs is due to their constitutive photo-sensitive molecules, which change shape when absorbing part of the incident light. These microscopic deformations can ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

A Computational Approach for Optimizing the First Flyer Using COMSOL Multiphysics

A.H. Aziz[1], H. Pourzand[1], A.K. Singh[1]
[1]Pennsylvania State University, University Park, PA, USA

COMSOL Multiphysics software was used to structurally optimize the Wright brothers’ flyer. The flyer was drawn in SolidWorks, imported and meshed in COMSOL. COMSOL Solid Mechanics module was used to analyze the flyer. Four of the sixteen struts were removed yet the structural integrity of the flyer was maintained. COMSOL Laminar Flow module was used to compute the aerodynamic forces and ...

Investigation of Thermal Contact Gas Gap Conductance Using COMSOL Multiphysics®

J. D. Freels[1], P. K. Jain[1], C. J. Hurt[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]The University of Tennessee, Knoxville, TN, USA

Our safety analysis group in the Research Reactors Division of Oak Ridge National Laboratory supports a project to investigate the production of Pu-238 isotope for missions of deep space travel in the High Flux Research Reactor. COMSOL Multiphysics® has been used to support this activity in the past, and we have successfully installed and irradiated three different target designs. The gas-gap ...

Modeling the Effect of Porosity on the Elastic Properties of Synthetic Graphite Using CT Scans and the Finite Element Method

G. Sowa[1], R. Paul[1], R. Smith[1]
[1]GrafTech International Inc., Parma, OH, USA

Predicting the physical properties and performance of carbon and graphite materials based on the microstructure of the finished material is a challenging endeavor. This paper discusses the process and workflow for measuring and analyzing the pore structure of graphite by combining advanced CT image technology with Simpleware’s ScanIP™ software. A stack of scanned CT images are imported into ...

The Swelling Responsiveness of pH-Sensitive Hydrogels in 3D Arbitrary Shaped Geometry

K. J. Suthar[1], D. C. Mancini[2], M. K. Ghantasala[3]
[1]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
[2]Physical Sciences and Engineering, Argonne National Laboratory, Argonne, IL, USA
[3]Department of Mechanical Engineering, Western Michigan University, Kalamazoo, MI, USA

The pH-sensitive hydrogels are responsive to the pH of surrounding solution, which often resemble to biomaterials. Recently, pH-sensitive hydrogels are widely used in various devices as sensing media. We present the simulation of swelling characteristic of 3D-arbitarary-geometry, pH-sensitive hydrogel in steady state conditions. Three nonlinear partial-differential equations that are ...