Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Simulating the Electrical Double Layer Capacitance

G. Zhang
Clemson University, Clemson, SC, USA

When a solid surface makes contact with a liquid medium, an electrical double layer (EDL) structure forms spontaneously through thermodynamic interaction between electrons and ions. In this study, we developed a computational model using commercial finite element analysis package COMSOL Multiphysics to simulate the double layer structure and quantify the EDL capacitance for the first time. In ...

Modeling and Simulation of Drug Release Through Polymer Hydrogels

V. Runkana[1], S. Maheshwari[1], S. Cherlo[1], RSR Thavva[1]
[1]Tata Research Development and Design Centre, Tata Consultancy Services Ltd., Pune, Maharashtra, India

Polymer hydrogels are commonly used as carriers or vehicles for the controlled release of drugs, primarily because of their bio-compatibility and because rates of drug release can be controlled by manipulating polymer properties like molecular weight, cross linking ratio, etc. Drugs can be released for prolonged periods of time through polymer hydrogels [1, 2]. Sustained drug release may ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a specified flow rate. Effects of different catalysts, screen sizes and flow direction were simulated. Factors ...

Understanding the Transition Flow Region through Modeling in COMSOL Multiphysics® Software

J. Sturnfield [1],
[1] Dow Chemical, Freeport, TX, USA

The pore sizes of many membranes being studied for separating the components in gas mixtures are on the scale of nanometers. Depending on the specific gases and pressures being used, this scale will put the flows in the Transition between Slip Flow and Knudsen regime. The differential flow of the gas components gives the relative diffusion of the gases through the membrane. There are a number of ...

Solid-Liquid Phase Change Simulation Applied to a Cylindrical Latent Heat Energy Storage System

D. Groulx[1], and W. Ogoh[1]

[1]Mechanical Engineering Department, Dalhousie University, Halifax, Nova Scotia, Canada

One way of storing thermal energy is through the use of latent heat energy storage systems. One such system, composed of a cylindrical container filled with paraffin wax, through which a copper pipe carrying hot water is inserted, is presented in this paper. It is shown that the physical processes encountered in the flow of water, the heat transfer by conduction and convection, and the phase ...

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method - new

J. Hu[1], R. Jia[1], K. Wan[2], X. Xiong[3]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
[3]Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA

The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation results were validated against experimental results. It was found that the Level Set method can predict the ...

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

A Wall-Cooled Fixed-Bed Reactor Model for Gas-Phase Fischer-Tropsch Synthesis

A. Nanduri [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

In the early 1920’s, Gas-To-Liquids (GTL) and Coal-To-Liquids (CTL) technologies were developed to account for the depleting crude oil resources [1]. During this period, Franz Fischer and Hans Tropsch developed a process to convert synthesis gas (syn gas), derived from coal gasification, to a wide range of high value-added products. This process later came to be known as Fischer-Tropsch (F-T) ...

Modeling of Hydrogel-Based Controlled Drug Delivery System for Breast Cancer Treatment - new

K. Cluff[1], L. Saeednia[2], H. Mehraein [1], R. Asmatulu[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

Polymeric hydrogel is a promising class of drug delivery systems with the controlled release behavior in the body. In-situ forming hydrogels can be injected into the body as a fluid which forms a gel within the body tissue and improve the efficacy of the drugs. Various polymers have been used as in-situ hydrogel formulations. These polymeric formulations can form gels at body temperature while ...