Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

3D Hydrogeological Modeling - From a Theoretical 2D Model through a Medium Scale Application up to a Challenge: Simulations at Basin Scale

E. Cavalli[1], R. Simonetti[1], M. Gorla[1], N. Ceresa[1]
[1]CAP Holding, Milan, Italy

An alluvial aquifer system has probably conceived as a numerical modeling hell. We have chosen COMSOL Multiphysics® for two reasons: 1) FEM methods allow to use complex geometries; 2) multiphysics simulation permits to run a single model with all phenomena. We built a section with these physics: a) Darcy's law, b) Richards' equation, c) ALE to show surface deformation, d) Hydrogeologcal ...

An Approach to Modeling Vacuum Desorption

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with an equilibrium loading, desorption is then accomplished by reducing the pressure to near vacuum. This type of ...

Evolution of the Geochemical Background of an HLW Cell in the Callovo-Oxfordian Formation

O. Silva[1], M. Pekala[1], D. Garcia[1], J. Molinero[1], A. Nardi[1], M. Grive[1], B. Cochepin[2]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Agence Nationale pour la Gestion des Dechéts Radioactifs, Châtenay-Malabry Cedex, France

The French National Waste Management Agency (Andra) envisages the safe disposal of High-Level Waste Intermediate-Level Long-Lived Waste through deep geological storage (multibarrier). Waste storage is based on the Callovo-Oxfordian formation (CallOx). It has been updated a reactive transport model accounting for the chemical and thermal evolution of a HLW cell. Improvements are a better ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

Two-Dimensional Modelling of a Non-Isothermal PrOx Reactor with Water Cooling for Fuel Cell Applications

H. Beyer[1], B. Schönbrod[1], C. Siegel[1], M. Steffen[1], and A. Heinzel[1][2]
[1]Zentrum für BrennstoffzellenTechnik GmbH, Duisburg, Germany
[2]Institut für Energie und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

This work treats of a preferential oxidation reactor, which is simulated by a two-dimensional axial symmetric model. The reactor serves as purification of hydrocarbon reformat and converts the CO mole fraction from up to 1 % in the feed gas down to a few ppm at the outlet to deliver a hydrogen rich feed gas for a PEM fuel cell. The model combined chemical kinetic expressions, which were ...

The Effect of a Correlated Surface Roughness and Convection on Heat Conduction

A.F. Emery[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

Heat conduction through a slab, 0 ≤ x ≤ W is one dimensional. However, if one of the edges, say x=0, is rough the conduction will be two dimensional. The two dimensionality varies with the correlation length with a maximum at a length approximately 10% of the slab width. The maximum percentage standard deviation of the flux is of the order of 3 time that of the roughness. Monte ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

Design of the Nanoexposure Chamber with COMSOL Multiphysics

Y.-C. Chan1, F.-Y. Li1, and C.-T. Lin2
1Department of Chemistry, National Chung Hsing University, Taiwan
2Department of Applied Mathematics, Providence University, Taiwan

The purpose of this study is to design a chamber for exposing hamsters to nanoparticles and to therefore examine the toxicity of that particular kind of nanoparticles. This simulation was employed to study the fluid dynamic behavior of the nanoparticle inside the chamber to determine the optimal conditions for the location and flow speed of the inlet for nanoparticles and a carrier, inert ...

Quick Search