Diffuse Double Layer
At the electrode-electrolyte interface, there is a thin layer of space charge in a diffuse double layer. This may be of interest when modeling devices such as electrochemical capacitors and nanoelectrodes. This tutorial example shows how to couple the Nernst-Planck equations to the ... En Savoir Plus
Electrochemical Impedance Spectroscopy
The purpose of this app is to understand EIS, Nyquist, and Bode plots. The app lets you vary the bulk concentration, diffusion coefficient, exchange current density, double layer capacitance, and the maximum and minimum frequency. Electrochemical impedance spectroscopy (EIS) is a common ... En Savoir Plus
Copper Deposition in a Trench
This model demonstrates the use of moving meshes in the application of copper electrodeposition on circuit boards. In these environments, the presence of cavities or 'trenches' are apparent. The model makes use of the Tertiary, Nernst-Planck interface for electrodeposition to keep track ... En Savoir Plus
Two-Phase Flow Modeling of Copper Electrowinning Using Bubbly Flow
Copper electrowinning is the process of copper extraction from an electrolyte solution and its deposition at the cathode surface, by passing an external current through the electrolytic cell and using an insoluble anode. During the process, oxygen bubbles are generated at the anode ... En Savoir Plus
Cyclic Voltammetry at a Macroelectrode in 1D
The purpose of the app is to demonstrate and simulate the use of cyclic voltammetry. You can vary the bulk concentration of both species, transport properties, kinetic parameters, as well as the cycling voltage window and scan rate. Cyclic voltammetry is a common analytical technique ... En Savoir Plus
Diffusion-Controlled Dendrite Formation Using the Level Set Method
The present model demonstrates diffusion-controlled electrodeposition of copper on microstructured band electrode arrays (MEA). Mass transport by Fickian diffusion of copper ions is solved using the Transport of Diluted Species interface. Dendrite formation as a consequence of diffusion ... En Savoir Plus
Orange Battery
This tutorial example models the currents and the concentration of dissolved metal ions in a battery (corrosion cell) made from an orange and two metal nails. This type of battery is commonly used in chemistry lessons. Instead of an orange, lemons or potatoes can also be used. En Savoir Plus
Voltammetry at a Microdisk Electrode
Voltammetry is modeled at a microelectrode of 10um radius. In this common analytical electrochemistry technique, the potential at a working electrode is swept up and down and the current is recorded. The current-voltage waveform ("voltammogram") gives information about the reactivity and ... En Savoir Plus
Potential Profile in Batteries and Electrochemical Cells
The purpose of this model is to visualize the electric potential in an electrochemical cell, for example a battery. This is done at OCV and during operation. In a battery, this would correspond to OCV, discharge, and recharge. The potential profile is explained both for cells with planar ... En Savoir Plus
A Two Phase Model For A Five Layer PEM Fuel Cell MEA
A low temperature PEM fuel cell produces water on the cathode side, and for higher currents liquid water will form in the porous layers and in the flow field The presence of liquid water has a large impact on the humidification of the ion-conducting polymer electrolyte, the transport of ... En Savoir Plus