La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.

Fountain Flow Effects on Electrodeposition on a Rotating Wafer

This example extends the analysis made in the model Electrodeposition on a Resistive Patterned Wafer by including the diffusion and convection of copper ions in the electrolyte. The coupled mass transport convection-diffusion effects are of interest in this type of reactor since they will be accentuated towards the rim of the wafer, limiting the current density. This will counter balance the ...

Copper Electroless Deposition

Electroless deposition or plating is a non-galvanic plating method that does not require any external electrical power. This technique is typically used for electroless plating of nickel, silver, gold and copper. In electroless deposition, partial oxidation and reduction reactions occur at the same electrode surface. The potential difference that exists between the equilibrium potentials for ...

Electrochemical Machining of a Micro Bore

For several high-precision applications, especially in hydraulic systems and fuel injectors, micro bores are needed. In most cases the shape of the injection hole, especially the edge rounding, has a significant influence on the atomization of fluids and therefore on the combustion process. Usually these micro bores are machined by electrical discharge machining (EDM). Due to the process ...

Electrocoating of a Car Door

This example models electrocoating of paint onto a car door in a time-dependent simulation. The deposited paint is highly resistive which results in lowered local deposition rates for coated areas. A primary current distribution in combination with a film resistance model is used to describe the charge transport in the electrolyte. The model is in 3D and uses an imported CAD geometry.

Electrodeposition of an Inductor Coil

This example models the deposition of an inductor coil in 3D. The geometry includes the extrusion of the deposition pattern into an isolating photoresist mask, and a diffusion layer on top of the photoresist. The mass transfer of copper ions in the electrolyte has a major impact on the deposition kinetics, resulting in higher deposition rates in the outer parts of the deposition pattern. The ...

Decorative Plating

Tutorial model of electroplating. The model uses secondary current distribution with full Butler-Volmer kinetics for both anode and cathode. The thickness of the deposited layer at the cathode is computed as well as the pattern caused by dissolution of the anode surface.

Secondary Current Distribution in a Zinc Electrowinning Cell

This is a model of the secondary current distribution in a zinc electrowinning cell. The model investigates the impact on the current distribution when changing the electrode alignment in a parametric study. The geometry is in 2D.

Electrodeposition of a Microconnector Bump with Deforming Geometry in 3D

This model simulates the shape evolution of a microconnector bump over time as copper deposits on an electrode surface. Transport of cupric ions in the electrolyte occurs by convection and diffusion. The electrode kinetics are described by a concentration dependent Butler-Volmer expression. The model is an extension to 3D of the Electrodeposition of a Microconnector Bump in 2D example.

Electrodeposition of a Microconnector Bump in 2D

This model demonstrates the impact of convection and diffusion on the transport-limited electrodeposition of a copper microconnector bump (metal post). Microconnector bumps are used in various types of electronic applications for interconnecting components, for instance liquid crystal displays (LCDs) and driver chips. The location of the bumps on the electrode surface is controlled by the use ...

11 - 19 of 19 First | < Previous | Next > | Last