Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Consultez les proceedings de la Conference COMSOL 2020

2008 - Hannoverx

Dynamic Simulation of Electromagnets

Harald Biller
Dr.
Continental Automotive Systems, Frankfurt, Germany

Harald Biller studied mathematics and physics at Darmstadt, London, and Würzburg. In 1999, he received his PhD from Stuttgart University, specializing in functional analysis, topology, and Lie theory. He worked as a lecturer at Darmstadt University until 2004, when he became a ... En savoir plus

Highest Pulsed Magnetic Fields in Science and Technology, Assisted by Advanced Finite-Element Simulation

Thomas Herrmannsdörfer

Dr.
Forschungszentrum Dresden-Rossendorf, Germany

Thomas Herrmannsdörfer got his PhD in experimental physics from the University of Bayreuth in 1994. In 1995, he received the Research Award of the Emil-Warburg-Foundation while he worked at the DFG-Graduiertenkolleg Bayreuth. From 1995 – 1998 he worked as a scientist at Hahn-Meitner ... En savoir plus

Comparison between COMSOL and RFSP-IST for a 2-D Benchmark Problem

G. Gomes
Atomic Energy of Canada Limited, Mississauga, Ontario, Canada

RFSP-IST (Reactor Fueling Simulation Program) is a computer code used for the full-core neutronics design and analysis of CANDU® reactors. RFSP-IST calculates the static flux and power distributions in the core by solving the neutron diffusion equation in two energy groups. For ... En savoir plus

Simulation of the Dynamic Behavior of a Droplet on a Structured Surface using the Non-conservative Level Set Method

N. Boufercha, J. Sägebarth, and H. Sandmaier
Universität Stuttgart / IFF-MST, Stuttgart, Germany

The ongoing trend towards miniaturization, higher integration as well as cost efficiency will make it necessary to investigate a new assembly method for micro components. In this paper, a novel method of fluidic-based micro assembly is presented. A self-assembly effect which is caused by ... En savoir plus

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to ... En savoir plus

Study of a Self Heating Process of Tetrafluoroethylene by the Exothermic Dimerization Reaction to Octafluorocyclobutane

M. Beckmann-Kluge[1], H. Krause[1], V. Schröder[1], A. Acikalin[2], and J. Steinbach[2]
[1]Federal Institute for Materials Research and Testing, Berlin, Germany
[2]Technical University Berlin, Berlin, Germany

The self heating process of Tetrafluoroethylene caused by an exothermic dimerization reaction was studied. The heat of reaction can lead to a thermal explosion by the decomposition of the Tetrafluoroethylene. Different reaction kinetics, including multistep kinetics, were used to ... En savoir plus

Analysis of the Mechanical Behavior of Violins Based on a Multi-physics Approach

E. Ravina
Dept. of Mechanics and Machine Design, Research Centre on Choral and Instrumental Music (MUSICOS), University of Genoa, Italy

The paper attempts to give a contribution to the dynamic analysis of musical instruments. A multidisciplinary approach oriented to the study of mechanical, structural, vibratory and acoustical phenomena related to stringed instruments is discussed. The case study focused in this paper ... En savoir plus

COMSOL Multiphysics Simulations of Microfluidic Systems for Biomedical Applications

M. Dimaki, J. Moresco Lange, P. Vazquez, P. Shah, F. Okkels, and W. Svendsen
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and ... En savoir plus

Building a Robust Numerical Model for Mass Transport Through Complex Porous Media

J. Perko[1], D. Mallants[1], E. Vermariën[2], and W. Cool[2]
[1]Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium
[2]Belgian Agency for Radioactive Waste and Enriched Fissile Material (ONDRAF/NIRAS), Mol, Belgium

Mass transport modelling through porous media is typically characterized by complex physics and geometry. In the particular case of radionuclide transport, modelling for radioactive waste repositories, an additional level of complexity, and thus uncertainty, originates from the long time ... En savoir plus

Modeling and Characterization of Superconducting MEMS for Microwave Applications in Radioastronomy

N. Al Cheikh[1], P. Xavier[1], J. Duchamp[1], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Grenoble, France
[2]Institute of Millimetrics Radio Astronomy (IRAM), Grenoble, France

Superconducting GHz electronics circuits are frequently used in Radio Astronomy instrumentation. The features of these instrumentations can be significantly improved by using tuneable capacitances, which can be realized by electrically actuated, micromechanical bridges (MEMS) made of ... En savoir plus