Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...

Multiphysics Modeling of a Gas Bubble Expansion

B. Chinè [1], and M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy and Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy

Modeling and simulation softwares are very useful tools when we have to analyse and understand the different phenomena occurring during metal foams processing, because several simultaneous physical mechanisms have to be accounted for. In this work we use Comsol Multiphysics 4.2 to model a spherical hydrogen gas bubble expanding in aluminium liquid, initially at rest. The aim of the present ...

Simulation and Verification of Coupled Heat and Moisture Modelling

N. Williams Portal[1], M. van Aarle[2], and J. van Schijndel[2]
[1]Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
[2]Department of Architecture, Building and Planning, Technical University of Eindhoven, Eindhoven, The Netherlands

This paper includes the implementation and comparison of two types of moisture potentials for the combined transport: the natural logarithmic of the suction pressure (LPc) and the relative humidity (RH). The finite element method has been utilized to evaluate coupled 1D thermal and hygric transport by means of COMSOL Multiphysics. The combined transport mechanisms were described by the ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...

Transient Electromagnetic-Thermal FE-Model of a SPICE-Coupled Transformer Including Eddy Currents with COMSOL Multiphysics 4.2

H. Neubert[1], R. Disselnkötter[2], and T. Bödrich[1]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Dresden, Germany
[2]ABB AG, Forschungszentrum Deutschland, Ladenburg, Germany

Current transformers are used to measure currents in power grid systems. They are characterized by strong interactions between external electrical sources and loads respectively and the magnetic subsystem. Self-heating due to losses has to be considered because of the temperature-dependent material behaviour. The paper presents a transient 3D FEA transformer model which includes a H(|B|) ...

Modeling of a Switchable Permanent Magnet Magnetic Flux Actuator

I. Dirba, and J. Kleperis
Institute of Solid State Physics of University of Latvia
Riga, Latvia

A simple magnetic circuit consisting of ferromagnetic core material, air gap, permanent magnets and current coils can be used to form magnetic actuators, motors etc. devices. In this work the current coils are not used to generate working magnetic field, but just to switch magnetic flux created by permanent magnets in necessary direction. Analytical and numerical (Finite Element Model, ...

Optimization of a Multiphysic Device – A Comparison of a Finite-Element- and a Equation-based Simulation

M. Jungwirth, and B. Hansbauer
University of Applied Sciences
Wels, Austria

To avoid overheating and malfunction of an electrical system it is necessary to optimize the power-loss of each component. The power dissipation mostly depends on multiple physical effects and therefore optimization is not an easy task. In this paper we focus on the reduction of complexity employing a equation-based simulation and compare it with a Finite-Element (FE) simulation in the time ...

Simulation of Brine Reflux and Geothermal Circulation in Large Carbonate Platforms: An Attempt to Predict Dolomite Geo-Bodies

M. Pal, and C. Taberner
Shell International Exploration and Production B.V.
Rijswijk, The Netherlands

Significant volumes of the worlds proved reserves are in dolostone reservoirs. Scope for recovery and success/upside of new exploration plays depend on the chances of encountering dolostone reservoirs with good reservoir properties. Although dolostones make excellent reservoirs in favourable cases, its prediction has not yet been achieved, as it is the most challenging diagenetic process to ...

Heat Loss Evaluation of an Experimental Set-up for Predicting the Initial Stage of the Boiling Curve for Water at low Pressure

K. T. Witte[1], F. Dammel[2], L. Schnabel[1], and P. Stephan[2]
[1]Fraunhofer Institut Solare Energiesysteme - Department of Thermal Systems and Buildings, Freiburg, Germany
[2]Technische Universität Darmstadt - Institute of Technical Thermodynamics, Darmstadt, Germany

In this paper heat losses and gains are assessed for a specific measuring set-up improving the validity of performance data to accurately predict the initial stage of a boiling curve. Simulation focus on achieving results predicting real measuring data of a plain surface structure. Therefore, the relevant components of the measuring set-up have been implemented in a 2-D axisymmetric model ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...