Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Simulation of Chamber Design for Pulsed Electric Fields Processing of Wet Olive Pomace - new

N. Varga[1], I. Perales[2], A. Portugal[2]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary
[2]ATEKNEA Solutions Catalonia, Barcelona, Spain

The application of pulsed electric fields (PEF) is well known in the food industry as an advanced technology for mass transfer improvement. A new potential adaptation area of PEF could be extracting a valuable antioxidant called polyphenol from wet olive pomace (WOP) which is a by-product of olive oil production. The modelling includes the PEF effects on the WOP which is flowing through a ...

Designing of End-winding Corona Protection of Generators by Help of Simulation

M. Wei[1], S. Grossman[1], J. Speck[1]
[1]Institute of Electrical Power Systems and High Voltage Engineering, Technische Universität Dresden, Dresden, Germany

The job of designing end-winding corona protection (ECP) system is one of the very important and complex phases for insulation configuration of high voltage rotating machines. This complexity stems on one hand from the highly nonlinear characteristics of the ECP material and on the other hand from the coupled multiphysics phenomena of the involved performance evaluation. Simulation based ECP ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Three-Dimensional Numerical Study of the Flow Past a Magnetic Obstacle

M. Rivero[1], O. Andreev[2], A. Thess[3], S. Cuevas[4], T. Fröhlich[1]
[1]Institute of Process Measurement and Sensor Technology, Ilmenau University of Technology, Ilmenau, Germany
[2]Helmholtz-Zentrum Dresden-Rossendorf e. V., Institut für Sicherheitsforschung Abteilung Magnetohydrodynamik, Dresden, Germany
[3]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[4]Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México

Flows of electrically conducting liquids in external magnetic fields are present in several applications. In this kind of flow, the inhomogeneous magnetic field creates a breaking force on the conducting fluid. As a result, a stagnant zone is formed in the zone affected by the localized field so that the fluid flows around it. Wakes in magnetohydrodynamic flows present interesting challenges ...

Finite Element Analysis of Defibrillation Current Density in Pregnant Women

A. Jeremic[1], E. Khosrowshahli[1]
[1]McMaster University, Hamilton, ON, Canada

Although resuscitation during pregnancy is relatively uncommon and rarely causes death, they have a particularly large impact in terms of the mortality of the unborn child and long-term effects on families and society as whole. In this paper, we present a new 3D finite element model of a pregnant female torso which accounts for presence of amniotic liquid and calculate current density ...

Numerical Optimization of Heating for High-Speed Rotating Cup by Means of Multiphysics Modeling and its Experimental Verification - new

K. Kyrgyzbaev[1], M. Willert-Porada[1], M. Terock[1]
[1]University of Bayreuth, Chair of Materials Processing, Bayreuth, Germany

The physics of rotating cups and disks is an important research subject in many areas of engineering. The rotating cup/disk has been employed in many industrial applications such as spin-coating of phosphor on television screens or photoresist films on silicon wafer, concentrating solutions by evaporation, centrifugal atomization of metal melts, and glass flakes production. In this work the ...

Pulsed Power Accelerator Design with COMSOL Multiphysics® Software - new

D. Reisman[1]
[1]Sandia National Laboratories, Albuquerque, NM, USA

We have developed Thor: a pulsed power accelerator for performing dynamic material experiments. The design was aided by using the COMSOL Multiphysics® software with the AC/DC Module and RF Module. Our design process involved optimizing the impedance of the system while maintaining a good margin against electrical breakdown. By using a three-dimensional electromagnetic model of the entire power ...

Predicting Degradation of a Composite Material Due to an Injected Current

J. Rivenc [1],
[1] Airbus Group Innovations, Toulouse Cedex, France

The purpose of this study is to predict, with a multiphysics model, the degradation area of a composite material when a current is injected into the material. The main physical phenomenon is an exothermic reaction, with an irreversible nonlinear variation of the electrical conductivity. The strategy is presented, in order to perform a computation that correctly takes the physics into account. In ...

Secondary Electron Trajectories in Scanning Tunneling Microscopy

H. Cabrera [1], D. A. Zanin [1], L. G. De Pietro [1], A. Vindigni [1], U. Ramsperger [1], D. Pescia [1],
[1] Laboratory for Solid State Physics, Microstructure Research, ETH Zurich, Zurich, Switzerland

The recently developed technique Scanning Tunneling Microscopy in the Field Emission regime (STM FE) is based on the Russell Young's topografiner technology. The set-up is a no contacting device consisting of a sharp tip approached vertically to a conducting surface at variable distances and biased with a small voltage with respect to the surface. The system builds a junction across which ...

A Field Simulator for Permanent Magnet Applications

E. Ledwosinska [1], J. Gammel [1]
[1] Silicon Labs, Austin, TX, USA

Permanent magnets are ubiquitous in our world today, from refrigerator magnets to industrial sensor applications. Often, the magnitude of the field at a specific distance from an arbitrarily shaped magnet of variable strength is a necessary parameter for end-use systems. We used the the AC/DC module of the COMSOL Multiphysics® software to simulate field strength of permanent magnets for aiding ...