Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Thermal Management of Li-ion Battery Packs - new

D. Adair[1], K. Ismailov[2], Z. Bakenov[3]
[1]School of Engineering, Nazarbayev University, Astana, Kazakhstan
[2]CPS, Nazarbayev University, Astana, Kazakhstan
[3]Institute of Batteries, Astana, Kazakhstan

A design for the thermal management of the media used for packing Li-ion batteries used in hybrid and electric vehicles has been developed. The design satisfies all thermal and physical issues relating to the battery packs used in vehicles such as operating temperature range and volume, and, should increase battery life cycle and charge and discharge performances. Particular attention was ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour in a HTPEM Fuel Cell

C. Siegel[1,2], G. Bandlamudi[1,2], and A. Heinzel[1,2]
[1]Zentrum für BrennstoffzellenTechnik (ZBT) gGmbH, Duisburg, Germany
[2]Institut für Energie- und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

Phosphoric acid doped polybenzimidazole (PBI) membranes are commonly used in today’s high-temperature polymer-electrolyte-membrane (HTPEM) fuel cell technology. COMSOL Multiphysics is used to model and simulate the three-dimensional, single-phase, non-isothermal overall cell behaviour at different operating points. The sol-gel PBI/H3PO4 membrane behaviour is modeled using an Arrhenius ...

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Modeling the Electroplating of Hexavalent Chromium

N. Obaid[1], R. Sivakumaran[1], J. Lui[1], A. Okunade[1]
[1]University of Waterloo, Waterloo, ON, Canada

This project modeled an industrial chromium plating process for automotive components. The process was modeled via the COMSOL Multiphysics® Electrodeposition Module. The simulation examined the effect of solution conductivity, electrode spacing, and anode height utilizing a factorial design approach. A sensitivity analysis was used to study the effect of these variables on the thickness value at ...

Charge-Discharge Studies of Lithium Iron Phosphate Batteries

A. K. R. Paul [1], R. D. Pal [2],
[1] CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
[2] Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India

A lithium-ion battery comprises of two intercalating electrodes separated by a membrane, sandwiched between aluminum and copper current collecting plates. The battery performance depends upon several parameters and its operating conditions. In this work we developed a model for a lithium iron phosphate battery and validated our results with experimental charge-discharge curves. We however note ...

State of Charge (SOC) Governed Fast Charging Method for Lithium Based Batteries

F. Naznin[1]
[1]TVS Motor Company Ltd., Hosur, Tamil Nadu, India

The proposed State of Charge (SOC) governed fast charging method for secondary lithium based batteries charges a battery many times faster than the normal Constant Current-Constant Voltage (CC-CV) charging and reduces the side-effects generally accompanied by various fast charging methods. The proposed charging algorithm takes into account the varying internal impedance of the battery at ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...

Modeling and Simulation of Thermal Runaway in Cylindrical 18650 Lithium-Ion Batteries

A. M. Melcher [1], C. Ziebert [1], B. Lei [1], M. Rohde [2], H. J. Seifert [2]
[1] Karlsruhe Institute of Technology, IAM-AWP, Karlsruhe, Germany
[2] Karlsruhe Institute of Technology, Karlsruhe, Germany

In this work the coupled electrochemical-thermal model for a lithium-ion battery (LIB) based on porous electrode theory has been extended with contributions coming from exothermic side reactions based on an Arrhenius law to model abuse mechanisms, which could lead to a thermal runaway. These extensions have been modeled with a constant fuel model and for specified current profiles and exterior ...

First
Previous
1–10 of 214