Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Electrical Modeling of Molten Salt Electro-Refining Processes

A. OURY [1], P. Namy [1],
[1] SIMTEC, Grenoble, France

A common pyrometallurgical route for the recovery of numerous metals and rare earths is high-temperature molten salt electrolysis. This process involves an electrolyte made of a molten salt in which the metal to be recovered, most commonly present in its oxide form, is dissolved. When a current is applied between the cathode and anode, the metal is deposited as a solid or a liquid at the ...

Analysis of 3-D Printed Structural Components for Cube Satellites - new

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Simulation of Current Density for Electroplating on Silicon Using a Hull Cell

F. Lima[1], U. Mescheder[1], H. Reinecke[3]
[1]Hochschule Furtwangen University, Furtwangen, Baden-Wuerttemberg, Germany
[3]Institut für Mikrosystemtechnik, Freiburg im Breisgau, Baden-Wuerttemberg, Germany

Electrodeposition has a major advantage over other methods of thin film deposition. It allows deposition at atmospheric pressure and room temperature, requiring inexpensive equipment. However, there are several parameters which can influence an electroplated metal layer quality. The current density distribution is taken into consideration. The Hull cell is an electrodeposition tank with a ...

Simulation of Cyclic Voltammetry of Ferrocyanide/Ferricyanide Redox Reaction in the EQCM Sensor

H. Kwon, and E. Akyiano
Dept. of Engineering and Computer Science
Andrews University
Berrien Springs, MI

In this paper, the cyclic voltammetry behavior of Ferrocyanide/Ferricyanide, which is commonly used for electrochemical DNA detection experiment, was studied in the commercial EQCM-D setup (Q-sense) using the COMSOL Multiphysics. The model was established in a 3D geometry of QCM liquid cell. The simulation shows depletion of concentration of ferrocyanice following applied electrode ...

State of Charge (SOC) Governed Fast Charging Method for Lithium Based Batteries

F. Naznin[1]
[1]TVS Motor Company Ltd., Hosur, Tamil Nadu, India

The proposed State of Charge (SOC) governed fast charging method for secondary lithium based batteries charges a battery many times faster than the normal Constant Current-Constant Voltage (CC-CV) charging and reduces the side-effects generally accompanied by various fast charging methods. The proposed charging algorithm takes into account the varying internal impedance of the battery at ...

Heat Generation Modeling of Two Lithium Batteries: from the Cell to the Pack in COMSOL Multiphysics® Software

J. Stoudmann [1], R. Rozsnyo [1], T. Mackin [2], J. Dunning [2]
[1] Haute École du paysage, d'ingénierie et d'architecture, Genève, Switzerland
[2] California Polytechnic State University, San Luis Obispo, CA, USA

A thermal model to predict the heat generation during the charge and discharge of a battery pack is an essential tool to manage the thermal behavior, performance and life of the batteries. In this work, a battery cell is modeled in COMSOL Multiphysics® using the Batteries and Fuel Cells module.

Modeling of Supercapacitor

G. Madabattula[1], S. K. Gupta[1]
[1]Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

Low cost high energy density batteries that can be charged and discharged rapidly are required in a number of applications. Tapping energy from renewal resources such as solar, wind and tide requires rapidly generated energy to be first stored and then used round the clock. Storing energy of a moving vehicle as it slows down and recovering it to accelerate the vehicle later can significantly ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries ...

Parameter Estimation in a Single Particle Model Using COMSOL Multiphysics® Software and MATLAB® Optimization

B. Rajabloo [1], M. Désilets [1], Y. Choquette [2],
[1] Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, QC, Canada
[2] Institut de recherche d’Hydro-Québec, Varennes, QC, Canada

When it comes to study the behavior of the secondary batteries, physics-based models are more representative of the real behaviour than equivalent circuit models, especially for the estimation of the life and capacity fading. On the other hand, the complexity and computational cost of sophisticated physics-based models like pseudo two-dimensional (P2D) models justify the use of more simplified ...

1 - 10 of 181 First | < Previous | Next > | Last