Quick Search

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL

J. Knox[1], K. Kittredge[1], R.F. Coker[1], R. Cummings[1], C.F. Gomez[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

“NASA\'s Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit” [1]. Under the new Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project [2], efforts are focused on improving current ...

Simulation of a Diesel Oxidation Catalyst Used in a NOx Storage and Reduction system for Heavy Duty Trucks

C. Odenbrand, and E. Senar Serra
Department of Chemical Engineering, Lund University, Lund, Sweden

This work concerns the performance of an oxidation catalyst used in a NOx storage and reduction system. The oxidation of NO is the main objective of this study, where the presence of CO and propene has also been taken into account. Experimental data has been determined on a monolithic oxidation catalyst mounted after a heavy duty diesel engine in a rig. The conversion of hydrocarbons is predicted ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

The Use of CFD to Simulate Turbulent Flows in Laboratory and Full Scale Flocculation Processes

A.H. Ito[1], O.T. Kaminata [1], S.R. Lautenschlager[1]
[1]State University of Maringá, Maringá, Paraná, Brazil

The hydraulic flocculates are employed in water treatment plants (WTPs), but may present problems during the mixing stage reducing the efficiency of treatment. In this context modeling of a hydraulic flocculate using COMSOL and a 1:10 scale model of the Maringá-PR Brazil city WTP flocculate was done. The WTP flocculate is shown in figure 1 and the model illustrating the acrylic flocculate ...

Modelling of Heat and Moisture Transport in a Corrugated Board Stack - new

M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

Corrugated board is produced on a machine where the corrugated medium is glued between two flat paper surfaces, the liners. The board is cut into sheets and stored in a stack until suitable moisture content has been reached. The sheets are then cut and creased into blanks for the production of boxes and other products. If the moisture content is too high, there is a risk for cutting problems in ...

Evaluation of Performance of Enzymatic Biofuel Cells with Microelectrode Arrays Inside a Blood Artery via Finite Element Approach

C. Wang[1], Y. Song[1]
[1]Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are considered as a promising candidate for powering miniature implantable devices. In order to predict the performance in the human blood artery, we simulated a 3D EBFC chip with highly dense micro-electrode arrays. In this simulation using COMSOL Multiphysics®, we applied the 1) Michaelis Menten equation; 2) Nernst potential equation; 3) Navier Strokes velocity, ...

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the ...

Computational Multiphysics to Optimize Humidification Chamber for a Novel PEM Fuel Cell Power System Used in Automobile Application - new

M. Raja[1]
[1]Tata Motors, Bengaluru, Karnataka, India

Proton Exchange Membrane (PEM) fuel cells are quickly becoming an attractive technology due to their ability to meet increasing energy demands in a cleaner, more efficient way compared to existing methods. A fuel cell is an electrochemical device which converts the chemical energy of a fuel and an oxidant directly into electricity without the intermediate step of classical, chemical combustion ...