Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL News Magazine 2017

Numerical Study of Smoldering Combustion of Activated Carbon in Ⅱ Iodine Absorber - new

T. Liang[1], M. Liu[1], X. Liu[1], Z. Meng[1]
[1]Safety Engineering, Zheng Zhou University, Zheng Zhou, Henan, China

Iodine absorber is a widely used purification equipment for purifying air in a nuclear power plant. In China, the common type is Ⅱ iodine absorber. Impregnated activated carbon is the main absorber within the iodine absorber. Because of the decays exothermic of radioactive iodine, heat is generated in the adsorption process. Carbon is a combustible material. Moreover, air is always supplied in ...

Pseudo 3-D Simulation of a Falling Film Microreactor

M. Al-Rawashdeh[1,2], V. Hessel[1,2], P. Löb[1], and F. Schönfeld[1]
[1]Institut für Mikrotechnik Mainz GmbH, Mainz, Germany
[2]Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands

Gas-liquid falling film microreactors carry out fast exothermic and mass transfer limited reactions. Since the major rate limiting steps occur on the liquid side, it is important to account for a realistic liquid film profile within the reactor simulation. Based on realistic channel geometry and liquid menisci profiles, we describe the liquid film thicknesses, flow velocities, species transport ...

Molecular Hydrogen Tracking in an Electrolytic Polishing Process

L. M. A. Ferreira [1],
[1] CERN, Geneva, Switzerland

In a water based electrolytic polishing process, the formation of molecular hydrogen at the cathode is unavoidable and it can contribute to the formation of surface defects at the anode side. This paper presents the work to model and simulate the molecular hydrogen flow inside radio frequency cavity geometries and compares it with the presence, type and relative position of certain defects in ...

Numerical Simulation of Forced and Static Smoldering Combustion

S. Singer[1], W. H. Green[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Transient, two-dimensional (axisymmetric) simulations of a cigarette subject to realistic static and forward smoldering cycles were performed. The computational domain consists of a porous packed bed of tobacco and a filter surrounded by a thin, porous paper and a region of surrounding air. The governing equations include overall mass conservation, momentum conservation, conservation equations ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Modeling and Simulation of Flat Sheet Membrane with Physical and Chemical Absorption

N. Ghasem [1], M. Al-Marzouqi [2],
[1] UAE University, Al-Ain, UAE
[2] UAE University, Al-Ain, UAE

Greenhouse gases trap heat and make the planet warmer. The main greenhouse gases emitted by human activities are: Carbon dioxide (CO2). The use of fossil fuel is the primary source of CO2 [1, 2]. Accordingly, there is a need for an efficient and novel separation processes for removal of carbon dioxide from gas streams [3, 4]. Here, a flat sheet membrane contactor is used to remove carbon ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques - new

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

Modelling Waste Water Flow in Hollow Fibre Filters

I. Borsi[1] and A. Fasano[1]
[1]Dipartimento di Matematica U. Dini, Università di Firenze, Firenze, Italy

In this paper we present a model to describe the process of waste water filtration based on hollow-fibre membrane filters. In particular, we deal with membranes whose pores diameter is in the range 0.01-0.1 µm. The main problem in these filtering systems is the membrane fouling. The mathematical model consists in two equations for the Darcy's flow through the filter, coupled with an ...

Diffusion Modeling in TGA in Context of CO2 Gasification of Char

G. Samdani[1], S. Mahajani[1], A. Ganesh[1], P. Aghalayam[2], R. K. Sapru[3], D. K. Mathur[3]
[1]Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
[2]Indian Institute of Technology Madras, Chennai, India
[3]UCG Group, IRS, ONGC, Chankheda, Ahmadabad

The Thermo- Gravimetric Apparatus (TGA) is often used for kinetics determination. In TGA setup, gasification reaction may be limited by the reach (diffusion) of the gasification agent to the internal surfaces of the char particles. In addition to this, after some time, ash is formed between the bulk of the gas and the upper surface of char. The present modeling exercise is aimed at examining the ...