Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Surface Aeration System Modeling using COMSOL

G. Selembo, P. Selembo, J. Stanton, and G. Paulsen
University of North Carolina
Charlotte, NC

Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, and due to the size of these systems, modifications for experimental testing can be economically prohibitive. ...

Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery using COMSOL Multiphysics

E. Agar, K. Knehr, C. Dennison, and E. Kumbur
Electrochemical Energy Systems Lab.
Dept. of Mechanical Eng. and Mechanics
Drexel University
Philadelphia, PA

Vanadium redox flow batteries (VRBs) are a promising new energy storage technology designed for use in long term applications such as uninterruptible power supply and coupling with renewable energy sources (i.e. wind and solar). Crossover is the undesired transport of vanadium ions through the ion exchange membrane during operation and is a major factor limiting the overall efficiency and ...

Poromechanics Investigation at Pore-scale Using Digital Rock Physics Laboratory

S. Zhang[1],
N. Saxena[2],
P. Barthelemy[1], and
M. Marsh[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Stanford University, Palo Alto, CA, USA

Understanding the rock structure at nano to micro scale is of growing importance in geology, oil and gas, and hydrology. New approaches that relies on a variety of high resolution 3D imaging techniques offered tremendous potential. These new approaches, in the meanwhile, introduce significant new challenges. Starting from digital imaging data, the paper introduces an image-to-simulation ...

Multiphysics Modeling of Implantable Micro-Electrode for Diagnostic and Therapeutic Applications in Neural Disorders

H. W. Ferose, R. G. Prasath, M. Alagappan, and G. Anju .
PSG College of Technology
Tamil Nadu, India

Neural disorders like epilepsy, Parkinson’s disease and Alzheimer’s disease have become a major area of concern because of their complexity and the huge number of occurrences. At present, most of the treatments are based on drugs and external nerve stimulation demanding critical care. This study aims at the design and simulation of an implantable micro-electrode which can lead to better ...

A Wide Range MEMS Vacuum Gauge Based on Knudsen’s Forces

V. Sista, and E. Bhattarchaya
Microelectronics and MEMS Lab
Department of Electrical Engineering
Indian Institute of technology Madras
Chennai, India

A MEMS based Knudsen’s pressure gauge working in the range of 1e-5 mbar to 10 mbar is designed and simulated in COMSOL. The working principle is based on Knudsen’s forces that arise when two plates are held at different temperatures and their separation is comparable to the mean free path of the ambient gas molecules. The forces change the separation between the plates and capacitance between ...

Optimization of the Design of a GEM Tracker Based on Gas Flow Simulations with COMSOL

V. De Smet[1], V. Bellini[2], E. Cisbani[3], F. Noto[2], F. Mammoliti[2], C. M. Sutera[4], and M. Mangiameli[4]
[1]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[2]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; INFN – Sezione di Catania, Catania, Italy
[3]INFN – Sezione di Roma - Sanità Group, Roma, Italy; Italian National Institute of Health, Roma, Italy
[4]INFN - Sezione di Catania, Catania, Italy

A Computational Fluid Dynamics study has been performed for a Gas Electron Multiplier (GEM) detector of high energy charged particles, currently under development as part of a new tracker of the high luminosity spectrometers in Hall A at Jefferson Lab. By gradual modifications of the geometry simulated in COMSOL, the design of the frame separating two GEM foils has been optimized with the aim ...

Modelling and Simulation of a Three-stage Air Compressor Based on Dry Piston Technology

M. Heidari, and P. Barrade
Lausanne, Switzerland

The core of this modelling is to study heat transfer and fluid dynamics processes for a compression expansion system, and the main particularity is that heat transfer and air movement are due to the movement of the piston. We have implemented a \"moving mesh\" solver to compute the volume changes of the compression chamber followed by a \"Fluid dynamics\" type solver. It allows correct ...

Numerical Simulation of Rapid Magnetic Microfluidic Mixer by COMSOL Multiphysics

C. Y. Wen, and K. P. Leong
Department of Aeronautics and Astronautics
National Cheng Kung University,

Conclusions from this presentation were: * The ‘finger’ pattern increased the interface area between the ferrofluid and water * Both upstream and downstream channels achieved about a 95% mixing efficiency within 2 seconds * The predicted process agrees with experimental results * As the magnetic field intensity increases, the mixing process accelerated. This trend continue to magnetic ...

Dynamic Multi-Phase Modelling and Optimisation of Fluid Jet Polishing Process

A. Beaucamp[2], R. Freeman[2], and Y. Namba[1]
[1]Chubu University, Kasugai, Japan
[2]Zeeko Ltd, Coalville, UK

In the Fluid Jet Method, a polishing fluid is compressed and delivered through a nozzle, allowing the spot area to become continuously replenished with abrasives and coolant. Process parameters include: Abrasive type and concentration, Inlet pressure, Nozzle diameter, Impingement angle, Surface feed of spot. The simulation uses COMSOL’s turbulent 2-phase flow model, with the incompressible ...

Photon Migration Through Multiple Layers of Biological Tissue

M.S. Yeoman[1], E. Sultan[2]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[2]College of Technological Studies, PAAET, Adailiyah, Kuwait

The modeling of light propagation through multiple layers of biological tissue are assessed & compared to the theoretical predictions by Perelman at al. [94 & 95] of the most-favorable-path (MFP). The MFP on which photons will be found can be obtained from the path of the net flux propagation using the diffusion equation. The diffusion equation is valid when studying diffuse light propagation, ...

Quick Search

2661 - 2670 of 3646 First | < Previous | Next > | Last