Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Ignition Process of Microplasmas

H. Porteanu, and R. Gesche
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Berlin, Germany

Microplasmas at atmospheric pressure are required in many applications, where treatments in normal ambient, with spatial resolution, are important. The interest on such miniaturized sources has increased due to the availability of a new generation of microwave sources based on high power GaN transistors. The present work deals with a simulation of the plasma formation after the application of ...

Design of Passive Micromixers using the COMSOL Multiphysics software package

M. Itomlenskis, P. Fodor, and M. Kaufman

Physics Department, Cleveland State University, Cleveland, OH, USA

Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of enhancing the mixing quality of two fluids in a microchannel with a non-periodic fractal pattern of ridges ...

COMSOL Multiphysics Modeling of a 20-W Microwave Electrothermal Thruster

E. Gao, and S. Bilen
The Pennsylvania State University, University Park, PA, USA

The Microwave Electrothermal Thruster (MET) is a space electric propulsion device that uses an electromagnetic resonant cavity within which a free-floating plasma is ignited and sustained, heating a propellant gas that is that exhausted out of a gas-dynamic nozzle. For an empty cavity it is fairly straightforward to accurately calculate the cavity’s resonant frequency and describe the ...

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

Super-resolving Properties of Metallodielectric Stacks

N. Katte[1], J. Haus[1], J.B. Serushema[1], and M. Scalora[2]
[1]University of Dayton, Dayton, OH, USA
[2]Charles M. Bowden Research Center, Redstone Arsenal, AL, USA

We show that diffraction can be suppressed in a one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs. The two methods are the transfer matrix method (TMM) and the Finite element method based software, COMSOL Multiphysics. The ...

A Biological Gear in the Human Middle Ear

H. Cai, R.P. Jackson, C. Steele, and S. Puria
Stanford University, Stanford, CA, USA

To support high frequency transmission, the mammalian middle ear construction is unique. The middle ear bones are connected through two mobile joints, the malleus-incus joint (MIJ) and the incudostapedial joint (ISJ). These synovial joints, consisting of joint capsule and synovial fluid inside, play an important role in sound transmission. We developed our current FE model using COMSOL that ...

Upgrading the HFIR Thermal-Hydraulic Legacy Code Using COMSOL

I.T. Bodey[1], R.V. Arimilli[1], and J.D. Freels [2]
[1]The University of Tennessee, Knoxville, TN, USA,
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Modernization of the High Flux Isotope Reactor (HFIR) thermal-hydraulic (TH) design and safety analysis capability is an important step in preparation for the conversion of the HFIR core from a high enriched Uranium (HEU) fuel to a low enriched Uranium (LEU) fuel. Currently, an important part of the HFIR TH analysis is based on the legacy Steady State Heat Transfer Code (SSHTC). The SSHTC is a ...

Finite element simulation for electronics

Y. Mizuyama
Panasonic Boston Laboratory, Newton, MA, USA

Dr. Yosuke Mizuyama is a Lead Engineer at Panasonic Boston Laboratory. He has been working on various electronics for Panasonic Corporation in Japan for many years. His research includes incandescent/fluorescent lamp, electrostatic/pzt inkjet, MEMS and BD/DVD/CD optical drive. His current interest is electromagnetic simulation for laser and optics. He has been engaged in numerical analysis using ...

Variable Capacitance And Pull-In Voltage Analysis Of Electrically Actuated Meander-Suspended Superconducting MEMS

N. AlCheikh[1], P. Xavier[1], J.M. Duchamp[1], C.H. Boucher[2], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Minatec, Grenoble, France
[2]Institute of Millimetric Radio Astronomy (IRAM), Grenoble, France

Variable capacitors between the fF and pF range are very interesting for high frequency applications like variable filters, resonators, etc. For radio astronomy applications variable capacitors, realized by electrostatically actuated, micromechanical Meanders-suspended bridges (MEMS) made of superconducting Niobium, have been measured to find C(V). A non plane capacitance behavior have been ...

Drying In Porous Media: Equilibrium And Non-Equilibrium Approaches For Composting Processes

A. Pujol[2], S. Pommier[3], G. Debenest[2], M. Quintard[2], and D. Chenu[1]
[1]Veolia Environnement, Limay, France
[2]IMFT, Toulouse, France
[3]INSA Toulouse, Toulouse, France

To understand origins and consequences of drying phenomenon during composting, a compositional drying model of a partially water-saturated porous media coupled with biodegradation has been developed. The different simulations carried out under COMSOL Multiphysics demonstrate the ability of the model to well describe the compositional drying of a partial water-saturated porous media and point out ...

2661 - 2670 of 3390 First | < Previous | Next > | Last