Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Multi-Scale Modelling of Catalytic Microreactors

B. Hari[1] and C. Theodoropoulos[1]
[1]The University of Manchester, School of Chemical Engineering and Analytical Science, Manchester, UK

Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, smaller plant size and lower cost of production. Models for such reactors need to be able to describe both the ...

Analog to Digital Microfluidic Converter

R. Dufour [1], C. Wu[1], F. Bendriaa[1], V. Thomy[1], and V. Senez[1]
[1]BioMEMS Group, IEMN, University of Lille Nord de France, Villeneuve d’Ascq, France

This paper presents an Analog to Digital Microfluidic Converter (ADMC) using passive valves and enabling the conversion of a continuous liquid flow into droplets for Electro-Wetting On Dielectric (EWOD) actuation. Valves calibration, geometry characteristics and losses reduction have been optimized using microfluidic application mode of COMSOL Multiphysics®.

Linear Convection and Conduction in Cylinders of Water Exposed to Periodic Thermal Stimuli

R.E. Tosh[1], and H.H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Primary reference standards for determining absorbed dose to water in radiotherapy beams used at cancer clinics and hospitals ultimately must make reference to the temperature change in water produced by ionizing radiation. The most direct experimental technique for this purpose is water calorimetry. Since the dose distributions delivered by such beams are nonuniform, temperature signals ...

A Model of a Horizontal Atmospheric Pressure Chemical Vapor Deposition Reactor

T. Adams

Naval Surface Warfare Center Crane Division, CRANE, IN, USA

A model of a horizontal atmospheric pressure chemical vapor deposition reactor was implemented to aid in the design of a laboratory based one. The model coupled momentum transport, energy transport, and mass transport phenomena to account for reacting fluid flow of a compressible gas in a heated chamber. The system modeled was silicon deposition from trichlorosilane in hydrogen carrier gas.

Supercritical CO2 Leakage Modelling for Well Integrity in Geological Storage Project

E. Houdu, O. Poupard, and V. Meyer
OXAND S.A., France

CO2 capture and storage constitutes a promising solution to control and reduce these emissions. Wellbore integrity is a key challenge to ensure long term safety and for public acceptance. For this objective, a two-phase flow model in porous media based on Darcy’s law has been proposed to simulate the CO2 leakage within the well at a rat hole area. The numerical simulations have highlighted ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

Heat Flux Predictions for a 3-D Compost Model

M. Teutli [1], Jiménez[1], Lozano[1], Peláez[1], J. Roque[2], and I. González[3]
[1]BUAP, Puebla, Mexico
[2]Universidad Veracruzana, Xalapa, VZ, Mexico
[3]UAM, Mexico City, Mexico

A 3-D model for compost was constructed taking as geometry basis a truncated cone, with dimensions of 4 m radius and 3 m height; in this structure an energy balance is applied for a two phase system (solid-air). Compost energy processes are modeled using COMSOL with a modified heat transfer equation which includes: volumetric heat capacity, chemical oxidation and biological growing and ...

Variable Capacitance And Pull-In Voltage Analysis Of Electrically Actuated Meander-Suspended Superconducting MEMS

N. AlCheikh[1], P. Xavier[1], J.M. Duchamp[1], C.H. Boucher[2], and K. Schuster[2]
[1]Institute of Microelectronics, Electromagnetism and Photonics (IMEP-LAHC), Minatec, Grenoble, France
[2]Institute of Millimetric Radio Astronomy (IRAM), Grenoble, France

Variable capacitors between the fF and pF range are very interesting for high frequency applications like variable filters, resonators, etc. For radio astronomy applications variable capacitors, realized by electrostatically actuated, micromechanical Meanders-suspended bridges (MEMS) made of superconducting Niobium, have been measured to find C(V). A non plane capacitance behavior have been ...

Shear Induced Detachment Of Microorganisms Attached To A Plane Wall

B. Boulbène, J. Morchain, and P. Schmitz
Université de Toulouse, NSA, UPS, INP, LISBP, Toulouse, France

We present numerical results involving microorganisms adhering to a plane surface submitted to a shear flow. The purpose is to have a better understanding of the removal mechanisms occurring during the cleaning in place of food processing equipments. The biological cell, i.e. the microorganism, is modelled as a rigid obstacle embedded in the bottom wall of the fluid domain. Shear induced ...

2741 - 2750 of 3390 First | < Previous | Next > | Last