Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Multiphysics Model of the NovaSure Endometrial Ablation Procedure

G.T. Martin[1], and L. Angelone[2]
[1]Hologic, Inc., Bedford, Massachusetts, USA
[2]Massachusetts General Hospital, Harvard Medical School, Marlborough, Massachusetts, USA

The NovaSure Endometrial Ablation System® is designed to remove the endometrial lining in the uterine cavity of women who suffer from menorrhagia. The NovaSure disposable device consists of a 2-pole, 4 electrode array that is inserted into the uterine cavity and deployed. We have developed a COMSOL Multiphysics model of the NovaSure ablation process. The model utilized COMSOL Multiphysics ...

Residual Stresses in a Panel Manufactured Using EBF3 Process

J. Gaillard[1], D. Locatelli[2], S. Mulani[3], and R. Kapania[3]
[1]Microelectronics and Micromechanics Department, Engineering school of ENSICAEN (Ecole National Superieure d'Ingénieurs de Caen), Caen, France
[2] Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
[3] Aerospace and Ocean Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

The residual stresses developed in a stiffened panel manufactured using Electron Beam Freeform Fabrication (EBF3) process were studied. EBF3 process is a layer additive process that can be used to build near-net shaped parts directly using computer controlled techniques, which can be used for aerospace structures. A COMSOL model was created to simulate the residual stresses using a thermo ...

Design of an Electrodynamically Actuated Microvalve Using COMSOL Multiphysics® and MATLAB®

M. Williams, J. Zito, J. Agashe, A. Sopeju, and D. Arnold
University of Florida, Gainesville, USA

This paper describes the design of a normally closed, electrodynamic microvalve.  Magnetic forces between a permanent magnet in the valve cover and a soft magnet in the valve seat hold the valve closed.  The combination of electrodynamic actuation and a mechanical restoring spring are used to open the valve.  A device model and a design optimization strategy using COMSOL ...

Quasi-static Analysis on the Effect of Metal Penetrating Depth into the Substrate in Microstriplines

S. Musa, and M. Sadiku
Prairie View A&M University Networking Academy (PVNA), Prairie View, TX, USA

The effect of metallization thickness on planar transmission lines plays an essential role in microwave integrated circuits and thin film technology, especially in the propagation characterization and the electric field distribution in the structures. The objective of this paper is to consider the planar transmission lines with finite thickness not penetrating and penetrating into isotropic ...

A Multiphysics Approach to Fundamental Conjugate Drying by Forced Convection

M. de Bonis, and G. Ruocco
DITEC, Universitµa degli studi della Basilicata, Campus Macchia Romana, Potenza, Italy

Heat and mass transfer involved in drying is studied by using COMSOL 3.4. The effect of air temperature on the performance of the drying process applied to fresh food slices is scrutinized. COMSOL’s flexible formulation is exploited by using special drying kinetics for the substrate, and by including a treatment of the dependence of the properties upon the residual moisture content. The model ...

Numerical Simulation of Granular Solids’ Rheology: Comparison with Experimental Results

A. Zugliano[1], R. Artoni[2], A. Santomaso[2], A. Primavera[1], M. Pavlicevic[1]
[1]Danieli & C. Officine Meccaniche, Italy
[2]DIPIC - Universita di Padova, Italy

A simulation of the behavior of bulk solids continuously flowing through a silo with internal flow feeders has been performed by means of a dissipative hydrodynamic model. The results obtained by these calculations and those found experimentally agree, not only with regard to the velocity profiles, but also relative to the pressure on the silo walls. The dissipative hydrodynamic model represents ...

Sound Attenuation by Hearing Aid Earmold Tubing

M. Herring Jensen
Widex A/S, Vaerloese, Denmark

In this study we model the sound attenuation properties of a hearing aid earmold tube. The model includes thermoviscous acoustic effects and it couples structural vibrations to the external acoustic field. Moreover, the finite element domain is coupled at two boundaries with an electroacoustic model of a hearing aid and an acoustic 2-cc coupler.

Designing the Actuator for the Next-Generation Astronomical Deformable Mirrors: a Multidisciplinary and Multiphysics Approach

C. Del Vecchio[1], R. Biasi[2] , D. Gallieni[3], and A. Riccardi[1]

[1]INAF-OAA, Fierenze, Italy
[2]Microgate Srl, Bolzano, Italy
[3]ADS International Srl, Valmadrera, Italy

The actuation system of the deformable mirror is one of the crucial components of an Adaptive Optics unit. One possible implementation comprehends a linear force motor and a capacitive sensor providing the feedback measure signal. Choosing a magnetic circuit that makes optimum use of the magnetic force delivered by a current and properly arranging the electrostatic geometry allows to obtain very ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

The Fabrication of a New Actuator Based on the Flexoelectric Effect

S. Baskaran[1], S. Thiruvannamalai[1], N. Ramachandran[1], F.M. Sebastian[1], and J.Y. Fu[1]
[1]State University of New York at Buffalo, Buffalo, New York, USA

This paper presents a novel methodology towards the design, analysis, and the fabrication process involved in developing a cost effective method to create a piezoelectric actuator by means of the flexoelectric effect. The basic physical equations of the flexoelectric effect and the qualitative analysis of the flexoelectric actuator are done using COMSOL Multiphysics. This effect is used to align ...