Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.
COMSOL News Magazine 2017

Numerical Simulations of Radionuclide Transport through Clay and Confining Units in a Geological Repository using COMSOL

J. Hansmann[1], M. L. Sentis[1], B. J. Graupner[1], A.-K. Leuz[1], C. Belardinelli[2]
[1]Swiss Federal Nuclear Safety Inspectorate (ENSI), Brugg, Switzerland
[2]Kantonsschule Solothurn, Solothurn, Switzerland

Introduction: The sectoral plan that defines the procedure and criteria of site selection for deep geological repositories for all categories of waste (high-level and low- and intermediate-level waste) in Switzerland started in 2008 and will last for about ten years. ENSI (Swiss Nuclear Safety Inspectorate) is in charge of reviewing the proposals and safety assessments for geological ...

Looking for the Origin of Power Laws in Electric Field Assisted Tunneling

H. Cabrera[1], D.A. Zanin[1], L.G. De Pietro[1], A. Vindigni[1], U. Ramsperger[1], D. Pescia[1]
[1]Laboratory for Solid State Physics, ETH Zurich, Zurich, Switzerland

A sharp tip approached perpendicular to a conducting surface at subnanometer distances and biased with a small voltage builds a junction across which electrons can be transferred from the tip apex to the nearest surface atom by direct quantum mechanical tunneling. Such a junction is used e.g. in Scanning Tunneling Microscopy (STM). When the distance d between tip and collector is increased ...

Empirical Model Dedicated to the Sensitivity Study of Acoustic Hydrogen Gas Sensors Using COMSOL Multiphysics®

A. Ndieguene[1], I. Kerroum[1], F. Domingue[1], A. Reinhardt[2]
[1]Laboratoire des Microsystèmes et de Télécommunications/Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
[2]Laboratoire d’Électronique et des Technologies de l’Information, CEA, LETI Grenoble, France

Due to the increasing demand for hydrogen gas sensors for applications such as automation, transportation, or environmental monitoring, the need for sensitive and reliable sensors with a short response time is increasing. This paper presents an empirical model that studies the sensitivity of acoustic hydrogen gas sensors. A parametric study based on the variation of physical properties of ...

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

Bridging the Complexity Gap in Modern Engineering Education with COMSOL Multiphysics® Software - new

L. Fromme[1], C. Schröder[1]
[1]Bielefeld University of Applied Sciences, Bielefeld, Germany

Multiphysics simulations play an important role in researchanddevelopment in almost all disciplines. Therefore it is necessary to teach them at the universities to provide the industry with well-trained graduate students. In our lectures about the finite element method we use a simple but rich enough example problem, which can be solved analytically. By comparing numerical and analytical ...

COMSOL Simulation of Flash Lamp Annealed Multilayers for Solid State Electrolyte Fabrication

C. Cherkouk [1], T. Nestler [1], M. Zschornak [1], T. Leisegang [1], D. C. Meyer [1],
[1] Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, Freiberg, Germany

All-solid-state batteries are among the next generation battery concepts that are currently being envisaged among both the international research community and industrial electronic vehicle producers. In addition to a long lifetime of more than several thousand cycles and intrinsic safety, applying solid electrolytes offers a high energy density due to larger electrochemical windows. Aluminum is ...

Predication of Acoustical Dissipation in Large Irregular Cavities by Helmholtz Solver

F. Mbailassem [1], Q. Leclere [1],
[1] LVA - INSA de Lyon, France

This paper introduces an efficient model to describe energy dissipation in acoustic. When the propagation domain has hard wall boundary conditions only viscous and thermal losses happen and are completely described by the so-called Full Linearized Navier-Stokes model (FLNS) which is implemented in thermoacoutics interface using the COMSOL Acoustics Module. This model defined by a set of ...

Numerical Analysis of the Flow Structure in the Continuous Casting Two-strand Tundish

M. Warzecha [1], J. Jowsa [1], A. M. Hutny [1], P. Warzecha [1], T. Merder [2]
[1] Czestochowa University of Technology, Czestochowa, Poland
[2] Silesian University of Technology, Katowice, Poland

Calculations were carried out for the water model of the investigated tundish, represented on a scale 1:3. Numerical calculations enable to estimate the fluid flow velocities, pahtlines and other parameters. Calculations were done for two different grids. Based on the results, the flow structure in the investigated tundish was obtained.


宋春芳 [1], 王燕 [1], 金光远 [1], 崔政伟 [1],
[1] 江南大学,无锡,江苏,中国

方便餐盒微波加热特性研究 宋春芳※ 王燕 金光远 崔政伟   (江苏省食品先进制造装备技术重点实验室,江南大学机械工程学院,江苏,无锡,214122) 摘要:本文采用 COMSOL Multiphysics® 建立了电磁与传热耦合的仿真模型,研究方便餐盒微波加热传热特性规律,模型包括加热腔、波导以及可旋转的转盘和物料,通过比较不同转速对仿真结果的影响,选用 7.5rpm 作为转盘转速。研究结果表明,微波功率为 700W,90s 的微波加热后,方便餐盒空间温度场分布和瞬态温度曲线与实验结果基本保持一致,微波仿真模型可行,研究结果为方便餐盒的微波快速加热及工业化生产与加工提供一定的理论依据。 关键词:微波;仿真;转盘;传热;转速

Use of COMSOL Multiphysics® Software for Physics Laboratory Exercises

H. van Halewijn [1],
[1] Fontys Hogeschool, Applied Physics, Eindhoven, Netherlands

COMSOL Multiphysics® is used to simulate thermal flow experiments at out University for Applied Physics. Students have to measure thermal flow problems and verify the measurements with detailed simulations. The desired accuracy is 5% or less. The presentation will cover 3 laboratory experiments: cooling of an Aluminum rod by natural convection, time dependent heat flow into a container with sand ...