Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

RF Hot-Zone Location within Rectangular Confined Spaces

R. Rodriguez[1]
[1]University of the West Indies, St. Augustine, Trinidad and Tobago

RF propagation modelling in (30 – 1000 MHz) SAR region for predicting the location and intensities of constructive interference patterns within rectangular confined spaces using waveguide theory and ray tracing techniques.

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

I. Terechkine[1], T. Khabiboulline[1], D. Sergatskov[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Performance degradation of a superconducting RF cavity after quenching in an external magnetic field was calculated using COMSOL. This degradation is due to the increased resistance of a superconducting surface with trapped magnetic flux. The amount of the trapped flux depends on the size of the normally-conducting opening that develops in the superconducting wall of a cavity during quenching. ...

Optimized Illumination Directions of Single-Photon Detectors Integrated with Different Plasmonic Structures

M. Csete[1], Á. Sipos[1], A. Szalai[1], G. Szabó[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The optimal orientations of different single-photon detector designs were determined by COMSOL software package. Absorption of niobium-nitride (NbN) stripes in two different (p=220 nm, 3p=660 nm) periodic patterns integrated with plasmonic elements was studied. In OC-SNSPDs consisting of ~quarter-photon-wavelength nano-cavity the optimum direction is perpendicular incidence onto NbN stripes in P ...

Design Optimization of Waveguide Applicator for Microwave Hyperthermia Cancer Treatment

P. Kumar [1], S. Kalra[1], A. Marwaha[1]
[1]Department of Electronics and Communication Engineering, Sant Longowal Institute of Engineering Technology Longowal, Punjab, India

The optimized design of a waveguide applicator has been proposed for superficial microwave hyperthermia using COMSOL Multiphysics 3.5a. In microwave hyperthermia cancer treatment body tissue is exposed to high temperatures using external and internal heating devices. Non-Invasive or external hyperthermia is used to treat tumors that are in or just below the skin (superficial). Non-invasive ...

Scattering of mm-Waves by Turbulent Structures in Magnetically Confined Fusion Plasmas

O. Chellaï [1], S. Alberti [1], I. Furno [1], T. Goodman [1], M. Baquero [1]
[1] Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Suisse

In magnetically confined fusion devices, electron cyclotron resonance heating (80-170 GHz) is characterized by a local RF-power deposition at the electron cyclotron resonance [1]. A mm-wave RF Gaussian beam is launched from a dedicated antenna and propagates through the highly turbulent scrape-off layer (SOL) at the edge of the confined plasma. Turbulence in the SOL is characterized by ...

Numerical Optimization Technique for the Optimal Design of the Surface Plasmon Grating Coupler

C. Caiseda[1], V. Aksyuk[2], I. Griva[3]
[1]Inter American University of Puerto Rico, Bayamon, PR, USA
[2]National Institute of Standards and Technology, Gaithersburg, MD, USA
[3]George Mason University, Fairfax, VA, USA

The optimal design of the grating coupler for surface plasmon generation is revisited for its interdisciplinary importance in the efficient use of energy, and the strong dependence of the energy convergence rate of the system on the design. This work contributes a comprehensive gradient based numerical optimization technique to optimize both geometry of the grating and parameters of the ...

Analysis of Electromagnetic Propagation for Evaluating the Dimensions of a Large Lossy Medium

A. Pellegrini[1] and F. Costa[1]
[1]ALTRAN Italia, Pisa, Italy

In this paper the propagation of a plane wave in a large lossy medium is presented. The investigated geometry consists in a wedgeshaped lossy dielectric embedded in a lossy material with different electromagnetic properties. The aim of the study is to determine the feasibility of a radar technique for measuring the length of the dielectric wedge. In order to address this problem and to evaluate ...

Modeling of Through-the-Snow Electric Field Propagation for Rescue Systems

N. Ayuso[1], V. Bataller[1], A. Muñoz[2], D. Tardioli[1], J. A. Cuchí[1], F. Lera[3], and J. L. Villarroel[1]
[1]Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
[2]Advanced Research Laboratories of I3A, Walqa Technological park, Huesca, Spain
[3]Institute of Material Science of Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain

Propagation models for avalanche rescue systems are studied here. The paper focuses on the through-the-snow electric field propagation at ISM frequencies, comparing several models (air model, snow model, three-layered model) and using different solving method (geometrical optics, numerical solution in Matlab and FEM with COMSOL). The simulation results are fitted to experimental data, finding ...

Multiphysics Analysis of Normal Conducting RF Cavities for High Intensity Proton Accelerators

M. Hassan[1], I. Gonin[1], T. Khabiboulline[1], V. Yakovlev[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of a typical proton accelerator would contain a radio frequency quadrupole (RFQ) and several buncher cavities. ...

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...