Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Irrotational Motion of an Incompressible Fluid Past a Wing Section in an Unbounded Region

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

Developers of numerical models who address the title problem face several hurdles, such as: (1), the need to formulate boundary conditions applicable in an unbounded region; (2), The need to specify conditions suitable to ensure a unique solution in a doubly connected region; and (3), The need to allow the interior boundary to have a sharp edge, such as a cusp. The aim of the work reported ...

Multicomponent Diffusion Applied to Osmotic Dehydration - new

H. Cremasco[1], K. Angilelli[1], D. Borsato[1]
[1]Universidade Estadual de Londrina, Londrina, Paraná, Brazil

The transfer of sucrose and fructooligosaccharides to melon and water to solution was modeled based on generalized form of Fick’s second law for simultaneous diffusion and resolved by the finite element method using the software package COMSOL Multiphysics® software. The diffusion coefficients, the mass transfer coefficient and the Biot number were determined using the simplex optimization ...

COMSOL as an Aid in the Teaching (Learning) of Heat Transfer

R. López[1], J. Morales*[1], M. Vaca[1], A. Lizardi[1], H. Terres[1], G. Bautista[1], A. Lara[1]
[1]Universidad Autonoma Metropolitana, Tlalpan, Distrito Federal, Mexico

Several undergraduate programs include the “Heat transfer” subject and, in our experience, it is hard for the students to grasp the concepts that are presented in the course. With this in mind, we designed and constructed an apparatus for the experimentation of heat transfer in a short bar. It was observed, that the time required to perform the experiment was so long, that the didactic aim was ...

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient pressure to exchange materials. This is a two way process, at which nutrients, Oxygen, and other ...

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

N. Petra[1], and M.K. Gobbert[1]

[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

The graphical user interface (GUI) of COMSOL Multiphysics offers an effective environment to get started solving problems. For reproducibility of the results, it is often desirable to explore the script-based modeling capabilities of COMSOL with MATLAB. There are also potential benefits of running COMSOL in parallel, specifically by running several computational threads in shared-memory ...

Shape Optimization of Electric and Magnetic System using Level Set Technique and Sensitivity Analysis

Y. Sun Kim, A. Weddemann, J. Jadidian, S. Khushrushahi, and M. Zahn
Dept. of Electrical Engineering and Computer Science
Cambridge, MA

The classical optimization method has been applied to many design problems for electromagnetic systems. One of its major difficulties is related to meshing problems arising from shape modifications. In order to circumvent these kinds of technical difficulties with moving mesh problems, several researches have tried to formulate shape optimization with fixed mesh analyses based on fixed grid ...

Stress and Fatigue Analysis of Subsea Umbilical and Cable Systems

M.S. Yeoman[1], V. Sivasailam[1], T. Poole[3], S. Ingham[3]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom
[3]JDR Cable Systems, Littleport, Cambridgeshire, United Kingdom

With the ever changing energy requirements & demand for better communication links across the planet, subsea umbilical & cable requirements are becoming more stringent. Where longer service life at a lower cost is now expected from manufacturers. In addition to this, with the need to exploit more sustainable energy sources from offshore wind & wave, where extreme weather conditions are ...

Virtual Experiments: Numerical Computations as a Powerful Tool for Engineers

P. Schmitz[1], A. Cockx[2], S. Geoffroy[3], and J. Gunther[1]
[1]Biochemical Engineering Dpt., Université de Toulouse, Toulouse, France
[2]Chemical Engineering Dpt., Université de Toulouse, Toulouse, France
[3]Mechanical Engineering Dpt., Université de Toulouse, Toulouse, France

An undergraduate course is developed to initiate future engineers to multiphysics numerical simulation by approaching concrete cases in various fields such as: heat transfers, fluid flow, mechanics, chemistry and electrostatics. The so called “Virtual Experiments” course consists of four projects given successively to students. Each project lasts about ten hours. The major notions related to ...

The Effect of the Dispersion Term on Flux of a Fluid in Permeable Media

O. Toscanelli, and V. Colla
Scuola Superiore S. Anna
Pontedera, Italy

The flux of a fluid in permeable media can be modelled using a continuous. To link the real system with the continuous model is mandatory to realize a suitable average of the equations and of the variables. The dispersion term comes from this averaging but it is not only a mathematical product of the modelling. The dispersion is due to the intrinsic geometry of the permeable media that forces ...