Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Accelerating R&D with COMSOL: A Personal Account

Erik Birgersson[1]

[1]Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore

This presentation gives an account of how COMSOL Multiphysics® software has helped to accelerate research and development. It has been used to simulate energy systems such as fuel cells, biomedical systems such as hydrogels and human skin, and monolithic catalytic converters. Each of these systems requires a mathematical model that can accurately represent the relevant physics, and which can be ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Development of the Service Frame for SBS Tracker GEM and TENDIGEM Development

F. Noto[1], E. Cisbani[2], F. Librizzi[1], F. Mammoliti[3], C.M. Sutera[1]
[1]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy
[2]Istituto Nazionale Fisica Nucleare - Sezione di Roma, Roma, Italy; Istituto Superiore di Sanità, Roma, Italy
[3]Istituto Nazionale Fisica Nucleare - Sezione di Catania, Catania, Italy; Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy

The Gas Electron Multiplier (GEM) technology has been proven to tolerate rate larger than 50 MHz/cm² without noticeable aging and to provide the sub-millimeter resolution on working chambers up to 45x45 cm² [1]. A new GEM tracker is under development for the upgrade of the SBS spectrometer in Hall A at Jefferson Lab. The chambers of the tracker have been designed in a modular way: each chamber ...

FEM Convergence for PDEs with Point Sources in 2-D and 3-D - new

M. Gobbert [1], K. M. Kalayeh [2], J. S. Graf [1],
[1] Department of Mathematics and Statistics, University of Maryland - Baltimore County, Baltimore, MD, USA
[2] Department of Mechanical Engineering, University of Maryland - Baltimore County, Baltimore, MD, USA

Numerical theory provides the basis for quantification of the accuracy and reliability of a FEM solution by error estimates on the FEM error vs. the mesh spacing of the FEM mesh. This paper presents techniques needed in COMSOL Multiphysics® software to perform computational studies for elliptic test problems in two and three space dimensions that demonstrate this theory by computing the ...

3D Simulation of Laser Interstitial Thermal Therapy in the Treatment of Brain Tumors - new

M. Nour [1], A. Lakhssassi [1], E. Kengne [1], M. Bougataya [1],
[1] Université du Québec en Outaouais, Gatineau, QC, Canada

Abstract: Due to the restriction of the number of probes that a patient can tolerate, and the inaccurate information provided by the invasive temperature measurements, which provide information only at discrete points, a mathematical model simulation is more effective to help doctors in planning their thermal treatment doses. This will maximize therapeutic effects while minimizing side effects. ...

Computer Simulation of Microwave Heating of Initially Frozen Sandwiches Using COMSOL Multiphysics® Application Builder - new

D. Fu [1], L. Wang [2], J. Liao [1], S. Dus [1], K. Bearson [1],
[1] Tyson Foods, Downers Grove, IL, USA
[2] Simulprocess, Summerfield, NC, USA

Customers typically prepare sandwiches using a microwave oven to heat a frozen sandwich. This causes huge temperature variations and quality issues due to multicomponent with different dielectric and physical properties and with phase changes at different freezing points in the heating process. To better understand the heating process of the sandwich, a computer simulator with a graphic user ...

Novel Approach for Teaching Microchemical Systems Analysis to Chemical Engineering Students Using Interactive Graphical User Interfaces (GUIs) - new

A. Nagaraj [1], P. L. Mills [1],
[1] Department of Chemical and Natural Gas Engineering, Texas A&M University - Kingsville, Kingsville, TX, USA

Chemicals are an integrated part of our daily life. While chemicals are significant contributor to a nation’s economy, sound management of chemical production is essential for environmentally friendly operation without maximizing operational costs. Next generation technologies must be developed that potentially change the chemical plants and process engineering giving rise to safe, compact, ...

Extraction of 13.56 MHz NFC-Reader Antenna Parameters for Matching Circuit Design - new

Prof. Dr.-Ing. habil. A. K. Palit [1],
[1] ZF-Lemfoerder Electronic GmbH, ZF-Friedrichshafen AG. Group, Espelkamp, Germany

Introduction: RFID system uses a Transponder and the near field communication (NFC) antenna and a matching circuit (Figure-1) in which at least latter two must be optimally designed for a higher efficiency. Typically, RFID antennas are flat inductive coils with 2 to 4 turns and are printed directly on the PCB. The larger antenna size implies larger operating distance whereas, the number of ...

A Numerical Euler-Lagrange Method for Bubble Tower CO2 Dissolution Modeling - new

D. Legendre [1], R. Zevenhoven [1],
[1] Åbo Akademi University, Turku, Finland

While the processes taking place in a bubble reactor are simple to describe in a few sentences it is much more difficult to give a physical description that is useful for engineering purposes. A better understanding of a cluster of bubbles dissolving in a liquid where the species transferred reacts with other dissolved species is an interesting engineering challenge that could result in ...

Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor - new

A.-M. El Guamra [1], D. Bühlmann [1], F. Moreillon [1], L. Vansteenkiste [1], P. Büchler [2], A. Stahel [3], P. Passeraub [1],
[1] HES-SO University of Applied Sciences Western Switzerland, Delémont, Switzerland
[2] Institute for Surgical Technology & Biomechanics, University of Bern, Bern, Switzerland
[3] Bern University of Applied Sciences Engineering and Information Technology, Bern, Switzerland

Introduction: This study describes a thin and low-cost capacitive pressure sensor in touch mode (TM) for monitoring fluid pressure from 0 to 40kPa in fluidic chambers with Luer fittings for medical applications. TM provides good linearity, large measuring range and large overload protection [1]. The choice of a thin polymer membrane as sensitive element with printed circular electrodes reduces ...