STOP Analysis using COMSOL Multiphysics® - Archived

This is a recording of a webinar that originally aired on August 12, 2021

Back to Events Calendar

Real-world optical systems are often required to operate in harsh environments, such as underwater and in outer space. The performance of these systems is thus influenced by different factors, including changes in temperature and structural loads. Most optical materials have temperature-dependent refractive indices. Physical deformations in the optical system, as a result of thermal stress or other applied loads, can also significantly affect the performance of the system.

If you would like to learn how to conduct coupled structural-thermal-optical performance (STOP) analyses to accurately predict and optimize the performance of optical systems and devices, join us for this live webinar.

Key Discussion Points

  • How to create a fully parameterized geometry of a typical lens system, trace rays through the system, and postprocess the results
  • How to model a high-fidelity STOP analysis that considers different pathways by which temperature changes affect optical performance
  • How to model temperature-dependent refractive indices
  • How to include thermal stresses that may contribute to structural deformation alongside other applied loads, such as gravity
  • How to model optical systems, where optics themselves are the heat source, as in high-power fiber laser systems
  • How to develop accurate solutions for STOP analyses that require multiphysics analysis

Register for STOP Analysis using COMSOL Multiphysics®

To register for the event, please create a new account or log into your existing account. You will need a COMSOL Access account to attend STOP Analysis using COMSOL Multiphysics®.

For registration questions or more information contact info-in@comsol.com.

Forgot your Password?
You have successfully logged in. This page will refresh to complete your event registration.
You have successfully created a new COMSOL Access account. This page will refresh to complete your event registration.

Archived Webinar Details

This is a recording of a webinar that originally aired on August 12, 2021