Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

FSI Analysis of Microcantilevers Vibrating in Fluid Environment

A. Ricci[1] and E. Giuri[1]

[1]Materials and Microsystems Laboratory (CHI-Lab), Politecnico di Torino, Torino, Italy

Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and quality factors (Qs). In this work a new approach to the above FSI problem is proposed: modes Q factors and ...

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables

S. Curcio[1] and M. Aversa[1]
[1]Department of Engineering Modeling, University of Calabria, Arcavacata di Rende, CS, Italy

The aim of the present work is the formulation of a theoretical model describing the transport phenomena involved in food drying process. The attention has been focused on the simultaneous transfer of momentum, heat and mass occurring in a convective drier where hot dry air flows, in turbulent conditions, around the food sample. The proposed model does not rely on the specification of ...

An Acoustical Finite Element Model of Perforated Elements

P. Bonfiglio[1][2] and F. Pompoli[1][2]
[1]Materiacustica S.r.l., Ferrara, Italy
[2]Engineering Department, University of Ferrara, Ferrara, Italy

The present work deals with a numerical investigation of resonating systems used for noise control applications. In literature one can find analytical models based on fluiddynamics concepts for evaluating losses occurring across the holes of the perforates. In the paper an acoustical formulation based on the equivalent dissipative fluid approach will be analyzed. It will be firstly applied to ...

Helical Coil Flow: A Case Study

M. Cozzini[1]

[1]Renewable Energies and Environmental Technologies Research Unit, Fondazione Bruno Kessler, Povo, TN, Italy

Stationary flow configurations in curved pipes constitute an important subject from both the theoretical and the practical point of view. A typical application concerns the calculation of secondary flow effects on the thermal efficiency of heat exchangers. Motivated by a similar problem, this paper investigates the flow patterns in a helical duct of non trivial cross section. The considered ...

Modeling of Complex Structures in Electrotechnology

Göran Eriksson
Dr., ABB Corporate Research, Sweden

Outline of presentation: In electromagnetic technology applications the finite element method is very well suited for a wide range of problem types For many cases, in particular when inhomogeneous materials having complex properties are involved as well as when multiphysics couplings are essential, it is the only option available The somewhat unfavourable performance scaling with problem ...

Static and Dynamic Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics®

R. Wislati[1] and H. Haase[1]
[1]Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper an Electromagnetic Solenoid Actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) systems for internal combustion engines. The analysis of the upper electromagnet has been performed using Finite Element Method (FEM) simulation. Thereby an axially ...

The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets

R.M.G. Ferrari[1]
[1]Danieli Automation S.p.A., Buttrio, UD, Italy

The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. In this work the possibility of assessing nondestructively the stress status in metal sheets, by using the acoustoelastic effect, is investigated. As the effect turns out to be very small for practical values of applied stress, the proposed technique ...

Model Development and Implementation of a Membrane Shift Reactor

J. Völler[1], M. Follmann[1], C. Bayer[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Low temperature fuel cells require hydrogen of high purity for electricity production to avoid catalyst poisoning. To purify hydrogenrich flue gases from hydrocarbon steam reforming membrane shift reactors with a metal membranes may be utilized. A model of a tubular membrane shift reactor with a hydrogenseparating palladium membrane is modeled in the COMSOL Multiphysics® Chemical Engineering ...

Simulation Bubble Nucleation and Bubble Growth of a Thermal-Bubble Microejector

Z. Hongwei[1] and A.M. Gué[1]
[1]Laboratoire d’Analyse et d’Architecture de Systèmes, Université de Toulouse, Toulouse, France

The present study investigates simulation model and droplet ejection performance of a thermal-bubble microejector. This model simulates the bubble nucleation and the bubble growth, to predict the droplet ejection process. Specificity, it is achieved by coupling an electric-thermal model and flow model with bubble dynamics equations. The model is validated by comparing prediction results with ...

Temperature Distribution in High Voltage Dummy Cable

G.Y. Sun[1], O. Sekula[1], and C. Albanbauer[1]
[1]Brugg Kabel AG, Brugg, Switzerland

A 2D model of coupled electricthermal application is used to calculate the temperature distribution in a high voltage dummy cable laid in free air, where no high voltage is applied. Resistive loss heats the cable while the surrounding air cools it down. The steady-state condition is reached when heat balances. The steady-state temperature depends not only on the resistive loss but also on the ...