Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Static and Dynamic Simulation of an Electromagnetic Valve Actuator Using COMSOL Multiphysics®

R. Wislati[1] and H. Haase[1]
[1]Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper an Electromagnetic Solenoid Actuator (EMVA) consisting of an upper and lower electromagnet, a linear moving armature and two preloaded springs is considered as a potential approach in Variable Valve Actuation (VVA) systems for internal combustion engines. The analysis of the upper electromagnet has been performed using Finite Element Method (FEM) simulation. Thereby an axially ...

FSI Analysis of Microcantilevers Vibrating in Fluid Environment

A. Ricci[1] and E. Giuri[1]

[1]Materials and Microsystems Laboratory (CHI-Lab), Politecnico di Torino, Torino, Italy

Cantilever vibration in fluid environment is probably one of the most common Fluid Structure Interaction problems in the field of Micro/Nano Electro Mechanical Systems. Usually the effect of fluid on cantilever oscillation is characterized in terms of mode resonance frequencies and quality factors (Qs). In this work a new approach to the above FSI problem is proposed: modes Q factors and ...

Modeling of Complex Structures in Electrotechnology

Göran Eriksson
Dr., ABB Corporate Research, Sweden

Outline of presentation: In electromagnetic technology applications the finite element method is very well suited for a wide range of problem types For many cases, in particular when inhomogeneous materials having complex properties are involved as well as when multiphysics couplings are essential, it is the only option available The somewhat unfavourable performance scaling with problem ...

Measuring and Calculation of Positive Corona Currents Using COMSOL Multiphysics®

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

The sensor type developed by Gunytronic uses corona discharge for measuring flow rates in exhaust streams of automotives, aircrafts and industrial plants. This paper will present the development of testing equipment used in laboratory for investigating physical relations on corona currents, charged particle transport, the calculation of the collateral electric fields and high potentials. This ...

Permanent Magnet Arrangements for Low-Field NMR

C. Horch[1], S. Schlayer[1], and F. Stallmach[1]
[1]Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany

For low-field NMR (Nuclear magnetic resonance), NdFeB permanent magnet arrangements are proposed to provide the static polarizing magnetic field. Especially a parallel and a circular arrangement of the permanent magnets, iron yokes and small shim magnets were tested and improved by COMSOL. The intent was to guide the design and the construction of NMR magnets by calculating the magnetic field ...

A Preliminary Approach to the Neutronics of the Molten Salt Reactor by Means of COMSOL Multiphysics®

V. Memoli[1], A. Cammi[1], V. Di Marcello[1], and L. Luzzi[1]
[1]Nuclear Engineering Division, Department of Energy, Politecnico di Milano, Milano, Italy

The Molten Salt Reactor (MSR), proposed along with other five innovative concepts of fission nuclear reactor by the Generation IV International Forum (GIF-IV), represents a challenging task from the modeling perspective because of the strong coupling between neutronics and thermo-hydrodynamics due to liquid fuel circulation in the primary loop. In this paper COMSOL Multiphysics® is adopted to ...

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is applied to several configurations: Newtonian and non Newtonian fluid (Cross viscosity law), coupled with a ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

Optimization of an Acoustic Waveguide for Professional Audio Applications

M. Cobianchi[1] and R. Magalotti[1]
[1] B&C Speakers S.p.a., Bagno a Ripoli, FI, Italia

In modern live sound reinforcement there is a growing use of line sources, obtained through the stacking of many loudspeakers with properly controlled wavefront shape. Thus the use of waveguides is mandatory in order to modify the shape and size of the wavefront exiting from professional compression drivers. With the help of COMSOL Multiphysics®, we have designed a waveguide featuring an ...

Helical Coil Flow: A Case Study

M. Cozzini[1]

[1]Renewable Energies and Environmental Technologies Research Unit, Fondazione Bruno Kessler, Povo, TN, Italy

Stationary flow configurations in curved pipes constitute an important subject from both the theoretical and the practical point of view. A typical application concerns the calculation of secondary flow effects on the thermal efficiency of heat exchangers. Motivated by a similar problem, this paper investigates the flow patterns in a helical duct of non trivial cross section. The considered ...