Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]


[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Failure Modes of Underground MV Cables: Electrical and Thermal Modelling

P.A. Wallace[1], M. Alsharif[1], D.M. Hepburn[1], and C. Zhou[1]
[1]Department of Energy Systems Engineering, Glasgow Caledonian University, Glasgow, United Kingdom

Two simulations of the performance of a Paper Insulated Lead Covered (PILC) Medium Voltage (MV) underground cable are presented. The first presents the thermal response of a cable, over seven days, to a realistic load with a diurnal variation. The second concentrates on the variation of the electric field stress within the cable over a single AC cycle. The effects of a void defect within the ...

Dynamic Crack Propagation in Fiber Reinforced Composites

C. Caruso[1], P. Lonetti[1], and A. Manna[1]

[1]Department of Structural Engineering, University of Calabria, Arcavacata di Rende, CS, Italy

A generalized model to predict dynamic crack propagation in fiber composite structures is proposed. The proposed approach is based on a generalized formulation based on the Fracture Mechanics approach and Moving mesh methodology. Consistently to the Fracture Mechanics, the crack propagation depends from the energy release rate and its mode components, which are calculated by means of the ...

The Full-System Approach for Elastohydrodynamic Lubrication

N. Fillot[1], T. Doki-Thonon[1], and W. Habchi[2]
[1]CNRS, INSA, Université de Lyon, Lyon, France
[2]Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos, Lebanon

A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve efficiently the problem of elastohydrodynamics lubrication with COMSOL Multiphysics®, using a PDE (Partial ...

Helical Coil Flow: A Case Study

M. Cozzini[1]

[1]Renewable Energies and Environmental Technologies Research Unit, Fondazione Bruno Kessler, Povo, TN, Italy

Stationary flow configurations in curved pipes constitute an important subject from both the theoretical and the practical point of view. A typical application concerns the calculation of secondary flow effects on the thermal efficiency of heat exchangers. Motivated by a similar problem, this paper investigates the flow patterns in a helical duct of non trivial cross section. The considered ...

Multibody Contact Analysis of an Rzeppa CV-Joint

L. Armellin[1], F. Gatelli[1], and G. Tanghetti[1]

[1]R&D Department, Metelli S.p.A., Cologne, BS, Italy

Ball joints are widely used in many applications. This paper describes the contact and kinematic analysis of an Rzeppa type constant-velocity joint (CV-joint). Starting from a conveniently simplified 3D model, at fixed joint angle of 45°, a CV-joint made of all “generic steel” components has been studied. Considering only a “perfect” geometry (i.e. not affected by ...

Modeling of Viscous Fingering

E. Holzbecher[1]

[1]Georg-August University, Göttingen, Germany

Viscous fingering is a topic of interest since the beginning of computational fluid dynamics. Here we focus on the classical constellation of miscible displacement, as it has been investigated in Hele-Shaw cells. A temperature or salinity front is entering with a fluid that has a different viscosity. The pure 1D flow is destabilized by the Saffman-Taylor instability. Using COMSOL Multiphysics® ...

Modelling of Heat and Mass Transfer in Food Products

[1]M.B. Andreasen

[1]Danish Technological Institute, Aarhus C, Denmark

The use of the finite element method for understanding and analyzing the freezing and drying processes of food products is in focus in this paper. The objective of this study is to develop a model that can predict temperature distribution and weight loss of food products during the freezing and drying processes. The problem was solved by utilizing heat, mass transfer and moving mesh model. In ...

Fast 2D Simulation of Superconductors: A Multiscale Approach

V.M. Rodriguez-Zermeno[1], M.P. Sørensen[1], N.F. Pedersen[2], N. Mijatovic[2], and A.B. Abrahamsen[3]
[1]DTU Mathematics, Lyngby, Denmark
[2]DTU Electrical Engineering, Lyngby, Denmark
[3]Materials Research Division, Risø, DTU, Roskilde, Denmark

This work presents a method to calculate AC losses in thin conductors such as the commercially available second generation superconducting wires through a multiscale meshing technique. The main idea is to use large aspect ratio elements to accurately simulate thin material layers. For a single thin superconductor, several standard test cases are simulated including transport current, externally ...

Thermal Design of Power Electronic Devices and Modules

N. Delmonte[1], M. Bernardoni[1], P. Cova[1], and R. Menozzi[1]
[1]Dipartimento di Ingegneria dell’Informazione, University of Parma, Parma, Italy

This work describes a way to apply 3D Finite Element Analysis (FEA) to the thermal design of power electronic modules using simplified geometry models of the system components. The method here presented can overcome the problem of solving equation systems with a very high number of Degrees Of Freedom (DOF) due to complex geometry of a power module.

Quick Search

1 - 10 of 209 First | < Previous | Next > | Last