Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

FEM Based Modeling In COMSOL Multiphysics and Design Of Control Of Distributed Parameter Systems

C. Belavý, and G. Hulkó, and K. Ondrejkovic, and D. Šišmišová
Slovak University of Technology in Bratislava, Bratislava, Slovakia

This paper presents a finite element method based modeling and design of control for distributed parameter systems. First, models of distributed parameter systems in the form of lumped-input/distributed-output systems and structure of control loop are introduced. Next, modeling of temperature fields of the casting die as distributed parameter systems in preheating process is performed in COMSOL ...

The Effect of the Disintegration of Chemical Stratification on the Time-dependent Behavior of the Earth’s Mantle

A. Galsa, and M. Herein
Eötvös University
Budapest, Hungary

Based on recent results from seismology, geochemistry etc. the distinct chemical character of the D’’ layer (lowest part of the mantle around the Earth’s core) has appeared unequivocally. Numerical calculations have been carried out to investigate the effect of the disintegration, mixing and homogenization of the dense D’’ on the time-dependent behavior of mantle convection. A ...

Computational Building Physics using Comsol: Research, Education and Practice

J. van Schijndel
Eindhoven University of Technology,
Eindhoven, The Netherlands

Jos van Schijndel completed his MSc in 1998 at the Department of Applied Physics at the Eindhoven University of Technology (TUe). In 2007 he obtained a PhD degree at the TUe on integrated heat, air and moisture modeling. Currently, he is assistant professor focusing on Computational Building Physics. His passion is creative computational modeling using state of art scientific software and ...

Multiphysics Modeling and Simulation of MEMS based Variometer for Detecting the Vertical Speed of Aircraft in Avionics Applications

K. Umapathi[1], K. Sukirtha[2], C. Sujitha[2], K. A. Noushad[2], Venkateswaran[1], R. Poornima[1], R. Yogeswari[1]
[1]United Institute of Technology, Coimbatore, Tamil Nadu, India
[2]Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India

The objective of this work is to develop a MEMS based Variometer to measure the vertical speed and to sense the instantaneous rate of climb or descent in Aircrafts to meet the miniaturization requirements in avionics industry. The design consists of dielectric material in between two micro electrodes. The micro diaphragm is placed on one of the electrode. As the aircraft changes altitude, the ...

Modeling Partially Absorbing Biosensors

D. Kappe[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Designing and constructing a lab-on-a-chip device poses a variety of questions. Transport of all required substances, detection of the analyte and its deposition on a sensor have to be incorporated. Different strategies have been developed to achieve good coverages of the sensor, like employing electric or magnetic gradients. On the basis of a ramp like structure, the binding of the analyte to a ...

Design and Analysis of Multilayered MEMS Microphone Using COMSOL Multiphysics®

Saranya srinivasa raghavgan[1], Sowmya Srinivasa raghavan[1], Shruti Venkatesh[1]
[1]Rajalakshmi Engineering College, Chennai, India

In this project, we report a design of MEMS microphone that is based on the application of porous silicon in improving the sensitivity of bulk micro machined capacitive pressure sensors. The property of a low Young’s modulus of porous silicon and its dependence on porosity have been exploited to obtain a higher sensitivity compared to pressure sensors with single crystalline silicon membranes. ...

Direct Modeling of Packed Bed Channeling - new

R. Schunk[1], J. Knox[1], R. F. Coker[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

An analysis to quantify the effects of packed bed channeling in the narrow passages of the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) is presented. The CDRA contains two pelletized adsorbent beds to remove CO2 respired by the crew. Each CO2 adsorbent bed is paired with an upstream desiccant bed to condition the inlet air (i.e. remove water vapor) prior to entry ...

Multi-Layers Surface Coil Design: Geometry Optimization - new

S. Aissani[1], L. Guendouz[2]
[1]CRM2, Institut Jean Barriol, University of Lorraine, Vandoeuvre-lès-Nancy, France
[2]Mesures et architectures électroniques, University of Lorraine, Vandoeuvre-lès-Nancy, France

Nuclear Quadrupole Resonance (RQN) is a radio frequency (RF) spectroscopic technique that is used to detect quadrupole nuclei such as Nitrogen-14. NQR was found to be a good candidate for detecting narcotics, explosives and medicines [1]. However, due to its low sensitivity the use of NQR is still limited. One way to increase the sensitivity is to improve the RF coil by means of a better RF ...

Numerical Simulation of Chamber Design for Pulsed Electric Fields Processing of Wet Olive Pomace - new

N. Varga[1], I. Perales[2], A. Portugal[2]
[1]ATEKNEA Solutions Hungary, Budapest, Hungary
[2]ATEKNEA Solutions Catalonia, Barcelona, Spain

The application of pulsed electric fields (PEF) is well known in the food industry as an advanced technology for mass transfer improvement. A new potential adaptation area of PEF could be extracting a valuable antioxidant called polyphenol from wet olive pomace (WOP) which is a by-product of olive oil production. The modelling includes the PEF effects on the WOP which is flowing through a ...

Study of Supercritical Coal Fired Power Plant Dynamic Responses for Grid Code Compliance - new

A. Gil-Garcia[1], I. Kings[1], B. Al-Duri[1]
[1]University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, UK

In clean coal technologies, improving energy conversion efficiency is one of the most important directions. Compared to traditional subcritical power plants, pressure-increased supercritical power plants improve the plant energy efficiency from 35% up to 45%. This work presents a study of the thermodynamic behaviour of the water cycle in coal-fired boilers in response to the changes in energy ...

2711 - 2720 of 3695 First | < Previous | Next > | Last