Articles techniques et présentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Deformable Image Registration for Pleural Photodynamic Therapy

B. Liu[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Deformable image registration is a form of medical image processing that can provide insights into the development of phenomenon and variation in normal anatomical structure over time. Prior to post-operative pleural photodynamic therapy (PDT), a series of CT scans of lungs will be acquired. During PDT treatment, an infrared navigation system is used to contour the lungs and provide real-time ...

Coupling Stochastic Boundary Perturbations with Fiber Drawing Heat Transfer

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

The production of polymer fibers is done by drawing raw material (preform) in a vertical cylindrical furnace whose heated walls radiantly heat the preform. The wall temperatures are very high and the dominant heat transfer to the fiber is by radiation with little effect from the convective flow of gas in the furnace. In contrast, for polymer fibers the convection contribution is large, and ...

COMSOL Multiphysics Applied to MEMS Simulation and Design

Dr. Piotr Kropelnicki[1]
Mu Xiao Jing[1]
Wan Chia Ang[1]
Cai Hong[1]
Andrew B. Randles[1]

[1]Institute of Microelectronics, Agency for Science, Technology and Research, Singapore, Singapore

In this research, we performed multiple COMSOL Multiphysics® simulations. We analyzed the dispersion curves of waves in a LAMB wave pressure sensor; simulated a thin metal film in a microbolometer and observed the resulting stress; investigated the thermal behavior of an acoustic wave microbolometer; and modeled the fluid-structure interaction (FSI) for piezoelectric-based energy harvesting from ...

Comparison Between Flow Simulations and Foam Experiments in Porous Media

R.R. Thorat[1], H. Bruining[1]
[1]Petroleum Engineering, CiTG, TU Delft, Delft, The Netherlands

Recovery of oil by gas injection is usually inefficient due to the low viscosity of the gas, which results in bypassing of the oil. By adding surfactant solutions it is possible to get in-situ foam formation. Foam has a much higher “viscosity” and hence does not bypass the oil, leading to enhanced oil recovery. In this context, the foam propagation is studied experimentally and theoretically. ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Hydro-Mechanical Modelling of Infiltration Test for a Bentonite-Sand Mixture: Model Verification and Parameter Identification

M. Hasal[1], R. Hrtus[1], Z. Michalec[1], R. Blaheta[1]
[1]Institute of Geonics AS CR, Ostrava, Czech Republic

The first aim of our work is to create a hydro-mechanical model (HM) of unsaturated fluid flow in bentonite-sand mixture (BSM) MX-80. The second aim is to validate and calibrate the developed model by using the data from a laboratory infiltration test of BSM. The used multi-physics model combines Richards type unsaturated flow with diffusive vapour flow and (nonlinear) elastic response of the ...

Theoretical Study of Phase and Amplitude Characteristics of Microwave Coplanar Delay Line Containing Thin Ferroelectric Layer

V. Nikolaevtsev[1], S. Yankin[2], S. Suchkov[1], D. Suchkov[1], A. Litvinenko[1]
[1]Saratov State University, Saratov, Russian Federation
[2]Joint International Laboratory LICS/LEMAC, IEMN UMR CNRS 8520, EC Lille, France

We theoretically studied the microwave coplanar line of different geometry based on MgO substrate with a thin (30 nm) ferroelectric layer under the external electric field using the environment of 3D modeling in COMSOL Multiphysics®, RF Module, Frequency Domain. Frequency dependence of delay line coefficient S21 was obtained. Sizes of the microstrip and the gap between the strip and the ground ...

A Computational Study of the Reynolds Piped flow Experiment

Sanidhya Painuli[1], Jayasankar Variyar[1]
[1]Vellore Institute Of Technology, School of Mechanical and Building Sciences, Vandalur Kelambakkam Road, Chennai, India

The study of interaction of fluid with matter assumes great significance for most engineering applications. The flow can be either turbulent or laminar, and different types of interactions arise out of these flow. In the introductory undergraduate course of fluid mechanics, a typical demonstration for these interactions is the Reynolds pipe flow experiment. Instabilities of various types like ...

Improvement of the Reflective Characteristic of the Microwave Ion Source Chamber with COMSOL®

[1]Hirohiko MURATA

Sumitomo Heavy Industries, Ltd., Shinagawa, Tokyo, Japan[1]

We, Sumitomo Heavy Industries, Ltd. have been developing a microwave ion source since 2011. The design of the chamber is important to generate plasma efficiently. The plasma chamber was designed with the COMSOL Multiphysics RF module, and reported the results at this conference last year. In order to improve the reflective characteristic further, we redesigned the plasma chamber with the RF ...

FEM Simulation of Magnetically Triggered Hydrogel Micro Particles as Advanced Drug Carriers - new

O. Yassine[1], M. Kavaldzhiev[1], J. Kosel[1], Q. Li[1], A. Alfadhel[1], A. Zaher[1]
[1]Electrical Engineering Division, CEMSE Group, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Thermally responsive microgel Poly (N-isopropylacrylamide), particles are embedded with iron oxide nanobeads creating magneto-thermally responsive microparticles (MTMs). The magnetic losses in the nanobeads activate the PNIPAM by heating it up to its lower critical solution temperature (LCST), which is approximately 32°C. The COMSOL Multiphysics® software with Heat Transfer Module is used to ...

Quick Search

2721 - 2730 of 3645 First | < Previous | Next > | Last