Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquent des phénomènes électriques, mécaniques, fluidiques et chimiques. Utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Numerical Simulations of Methane Aromatization with and without a Ceramic Hydrogen Separation Membrane

Z. Li[1], C. Kjølseth[2], S. Hernandez Morejudo[3], R. Haugsrud[1]
[1]University of Oslo, Department of Chemistry, FERMiO, Oslo, Norway
[2]Protia, Oslo, Norway
[3]University of Oslo, Department of Chemistry, InGAP, Oslo, Norway

Oxygen-free methane aromatization has been attracting growing attention due to a potential means for producing high valuable products such as aromatics and hydrogen. Many studies have been focused on catalysts screening and characterization, and elementary thermodynamic steps of the reaction. However, little attention has been paid to fluid dynamics which are important for an industrial ...

Model of a Heavy Metal Adsorption System using the S-Layer of Bacillus Sphaericus

J. Orjuela, and A. González
Dept. de Ingeniería Química Facultad de Ingeniería
Universidad de los Andes
Bogotá
Colombia

A bidimensional and pseudo homogenous model was proposed for the study of mass transfer in the bioadsorption process of chromium VI in the S-layer of immobilized Bacillus sphaericus in a packed column. The implementation of such a model in COMSOL Multiphysics will be explained in detail and the final results presented. These include chromium concentration profiles along the column and its ...

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

CVD Graphene Growth Mechanism on Nickel Thin Films - new

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Bio-Effluents Tracing in Ventilated Aircraft Cabins

G. Petrone[1], L. Cammarata[1], and G. Cammarata[1]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Ventilation and Indoor Air Quality (IAQ) are issues of very high interest, determining comfortable conditions for occupants and no-contaminated local atmosphere. The aircraft cabins are more confined and have a higher occupant density than other indoor environments such as offices or residential houses. The passengers and the crew share a closed and ventilated cabin, which brings potential risk ...

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method - new

J. Hu[1], R. Jia[1], K. Wan[2], X. Xiong[3]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
[3]Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA

The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation results were validated against experimental results. It was found that the Level Set method can predict the ...

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics® Software

P. L. Mills [1], K. Barman [1], S. Mothupally [1], A. Sonejee [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

Introduction Fluid flow patterns in research or process-scale equipment where a fluid is contained between concentric rotating cylinders in the absence of bulk axial flow has received notable attention in the field of fluid mechanics. Annular flows occur in many practical applications, such as in the production of oil and gas, fluid viscometers, centrifugally-driven separation processes, ...

Modeling of Packed Bed Reactors: Hydrogen Production by the Steam Reforming of Methane and Glycerol - new

A. Dixon[1], B. MacDonald[1], A. Olm[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

The conventional route to hydrogen production is by steam reforming of methane (MSR) in a multitubular packed bed. With the increasing use of biodiesel as a renewable fuel, interest has grown in steam reforming of the excess glycerol produced as a side product (GSR). We use COMSOL Multiphysics® software to model a tubular packed bed reactor, solving a single pellet model at each point. The ...

Development of a User Interface for Design of SO2 Oxidation Fixed-Bed Reactors

A. Nagaraj [1], P. L. Mills [1],
[1] Texas A&M University - Kingsville, Kingsville, TX, USA

H2SO4 is a very important chemical commodity, and indeed, a nation’s H2SO4 production has been a reasonably good indicator of its industrial strength for the last century or so1,2. Nearly 350 MM tons of H2SO4 was produced in 20143.The demand for H2SO4 in United States exceeds the supply and hence to increase production, recycling and innovative clean technologies must be explored. From ...

COMSOL Multiphysics® Simulation of 3D Single-Phase Transport in a Random Packed Bed of Spheres - new

A. Dixon[1]
[1]Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Packed beds are important in the chemical industries. Computational fluid dynamics (CFD) can simulate detailed flow and scalar transport in packed beds for improved understanding and quantitative information. We present simulations of single-phase gas flow, conjugate heat transfer and isothermal dispersion of mass in a 3D model of a randomly-packed bed (tube-to-particle diameter ratio = 5.96) of ...

1 - 10 of 338 First | < Previous | Next > | Last